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EXECUTIVE SUMMARY 

Quantifying pedestrian volumes and levels of walking activity is critical for many 

transportation tasks, including pedestrian planning and safety analysis. Because of the limitations 

of traditional pedestrian data collection methods (typically short-duration manual counts at a 

limited number of locations), direct-demand models of pedestrian volume models—identifying 

relationships with built environment characteristics—are becoming more common. Still, direct- 

demand models require large quantities of (pedestrian) estimation data in order to be 

generalizable beyond the few locations where they were developed, and they are often 

insensitive to temporal variations in walking activity. 

We overcome these limitations using a novel source of pedestrian data: estimated 

pedestrian crossing volumes based on push-button event data recorded in traffic signal controller 

logs. Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded, 

and UDOT archives these traffic signal pedestrian actuation data for use in its Automated Traffic 

Signal Performance Measures (ATSPM) system. A previous UDOT research project developed 

methods to estimate pedestrian crossing volumes from pedestrian traffic signal data with 

reasonable accuracy. Overall, these continuous data allow us to study more sites (1,494 

signalized intersections throughout Utah) over a much longer time period (one year) than in 

previous direct-demand models, including the ability to detect variations across days of week and 

times of day. 

Specifically, we develop direct-demand (log-linear regression) models that represent 

relationships between built environment variables (calculated at ¼- and ½-mile network buffers) 

and annual average daily and hourly estimated pedestrian volumes. We test many built 

environment variables with empirical and/or theoretical linkages with pedestrian activity. We 

also control spatial autocorrelation through the use of spatial error models, and validate our 

model results using k-fold cross-validation. To our knowledge, this is the first study to relate 

traffic signal-based measures of pedestrian activity with built environment characteristics. 

All results confirm theorized relationships: There is more pedestrian activity at 

intersections with greater population and employment densities, a larger proportion of 
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commercial and residential land uses, more connected street networks (with greater intersection 

density and percentage of four-way intersections) with greater transit access, more nearby 

services and amenities (e.g., parks and schools), and in lower-income neighborhoods with larger 

households and fewer vehicles. While several of these findings confirm evidence from previous 

research, others—most notably, those related to street network connectivity, specific 

destinations, and household income—are relatively novel empirical findings (most past research 

has found insignificant or theoretically inconsistent relationships). These findings support the 

value of using pedestrian traffic signal data in direct-demand models.  

Notably, we also find relevant day-of-week and time-of-day differences in relationships 

between pedestrian volumes and measures of the built environment. For example, schools attract 

pedestrian activity, but only on weekdays during daytime hours, and the coefficient for places of 

worship is higher in the weekend model. Employment density was more closely linked to 

pedestrian volumes during weekdays and daytime hours, while population density had a stronger 

association during evenings and weekends. K-fold cross-validation results show the stability of 

our models. Our application of models to estimate average daily and hourly pedestrian crossing 

volumes at over 62,000 unsignalized intersections in Utah shows the predictive power and 

applicability of this research.  

Results demonstrate the value of these novel pedestrian signal data for planning purposes 

and offer support for built environment interventions and land use policies to encourage 

walkable communities. We also offer recommendations for using these estimates of pedestrian 

volumes for various other important transportation planning and engineering tasks, including 

pedestrian safety analysis, multimodal level-of-service calculation, health impact assessment, 

pedestrian design and infrastructure prioritization, and joint transportation and land-use planning. 

Future research could enrich pedestrian traffic signal data with other data sources (trail counts, 

weather data, app- or GPS-based location data) and apply big data processing and machine 

learning methods to improve our understanding and modeling of relationships between the built 

environment and pedestrian volumes.  
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1.0  INTRODUCTION 

1.1  Problem Statement 

Quantifying pedestrian volumes and levels of walking activity is critical for many 

transportation planning, engineering, and management tasks. Traffic safety analyses require 

estimates of pedestrian exposure to risk, and durations/distances of physically active 

transportation are inputs to transportation health impact assessments. Information on walking is 

also useful for analyzing pedestrian level/quality of service, designing pedestrian infrastructure, 

and prioritizing pedestrian investments. Furthermore, there is a growing interest in creating 

active living and walk-friendly communities in order to improve health, reduce automobile 

dependence, and strengthen local economies.  

Pedestrian volume data can be collected. Nevertheless, traditional data collection 

methods for monitoring pedestrian traffic have limitations: They involve short durations, few 

locations, or samples of the population. Manual intersection or street segment counts are time 

consuming and often infeasible to conduct over long periods of time. Instruments such as 

infrared counters can record continuous data on trail users, but they are costly to deploy across 

multiple sites (Ryus et al., 2014). The passive collection of crowdsourced pedestrian data from 

mobile devices shows promise, but data may be non-representative and require calibration and 

factoring methods (StreetLight InSight, 2018). Methods have been developed to adjust short-

duration counts to average pedestrian volumes using factors developed from permanent counters 

(FHWA, 2016), but they still usually require manual counts and are sensitive to count duration, 

seasonality, and factor group selection.  

Alternatively, pedestrian volume data can be modeled. Conventional methods of 

modeling roadway volumes are inappropriate for pedestrians, due to data and scale challenges 

with including pedestrians in regional travel-demand forecasting models (Singleton et al., 2018). 

Instead, planners interested in facility-specific information have turned to using direct-demand 

models (Kuzmyak et al., 2014; Munira and Sener, 2017). Direct-demand models predict 

pedestrian volumes using observed counts and measures of the surrounding streetscape, land 

uses, built environment, and street network. Such models help to understand how environmental 
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features affect pedestrian volumes and inform transportation and land-use planning and urban 

design strategies to promote walkable communities. Still, direct-demand models require large 

quantities of (pedestrian) estimation data in order to be generalizable beyond the few locations 

where they were developed, and they are often insensitive to temporal variations in walking 

activity. 

One potential data source that is relatively ubiquitous in both time and space (available 

24/7 at many intersections) is the high-resolution data logs from traffic signal controllers. Every 

time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT 

archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal 

Performance Measures (ATSPM) system. The use of pedestrian signal data is a potentially rich 

source of information about levels of pedestrian activity. 

Phase I of this research—Singleton, Runa & Humagain (2020), “Utilizing Archived 

Traffic Signal Performance Measures for Pedestrian Planning and Analysis” (UDOT Research 

report no. UT-20.17)—developed methods to translate pedestrian traffic signal data into valuable 

information on pedestrian volumes at signalized intersections. Singleton et al. (2020) used one 

year of data from 1,522 Utah traffic signals and time series clustering to describe patterns of 

pedestrian signal activity. Based on these typologies, they randomly selected 90 Utah signals, 

used UDOT traffic cameras to record over 10,000 hours of video, and manually counted almost 

175,000 pedestrians crossing at the intersections. Using processed hourly pedestrian actuations 

and detections from ATSPM data, they estimated five non-linear regression models (segmented 

by pedestrian activity, cycle length, and pedestrian recall) using pedestrian signal data to predict 

hourly pedestrian crossing volumes. Overall, their estimates were strongly correlated with 

observed volumes (0.84) and had a low error (+/- 3.0 on average). These results demonstrated the 

validity of using pedestrian data from traffic signals to estimate levels of pedestrian activity. 

Phase II of this research—the present project—extends the capability of pedestrian 

volume estimation to unsignalized intersections. First, direct-demand models of pedestrian 

volumes are developed that represent theoretically consistent relationships between pedestrian 

crossing volumes and measures of the built environment, land use, and neighborhood 

sociodemographics at around 1,500 signalized intersections in Utah. Second, these models are 

https://drive.google.com/file/d/1AwLf1DZVw0Vj-btPl5eoWe0UOw9TyFwq/view
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applied to additional built environment data to predict pedestrian volumes at over 62,000 

unsignalized intersections in Utah. We expect that these volume estimates offer improved 

opportunities for pedestrian planning and operations as well as for health and safety analyses.  

1.2  Objectives 

The objective of this research is to examine relationships between the built environment 

and pedestrian activity through the development of direct-demand models of pedestrian volumes, 

taking advantage of a novel and relatively ubiquitous (in both time and space) source of 

pedestrian data. Specifically, we utilize estimates of pedestrian crossing volumes—taken from 

pedestrian push-button activity data from high-resolution traffic signal controller logs—and 

apply log-linear regression models for different time periods to study nearly 1,500 signalized 

intersections throughout Utah. Our study’s primary contribution is the use of continuously 

collected pedestrian activity data from traffic signals (measured over the course of one year, and 

averaged per day and per hour) for direct-demand pedestrian volume modeling. Notably, this 

allows us to uncover some theoretically consistent built environment relationships with walking 

that many other similar studies have not found, and to identify day-of-week and time-of-day 

variations in those relationships.  

1.3  Scope 

This project accomplished this research objective through the following major tasks:  

• Reviewing literature on pedestrian volume modeling studies, built environment 

predictors of pedestrian volumes, traffic signal-based measures of pedestrian 

activity, and direct-demand pedestrian volume modeling.  

• Assembling pedestrian data and estimating pedestrian volumes at signalized 

intersections, using results from Phase I. This task involved processing of one 

year of ATSPM traffic signal data from 1,494 signalized intersections and 

applying the factoring methods developed during the Phase I project.  
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• Assembling and preparing geospatial information about signalized and 

unsignalized intersections in Utah. This information included local land use and 

built environment characteristics (e.g., residential density, businesses, schools, 

parks) as well as measures of the adjacent multimodal transportation system (e.g., 

transit service) and neighborhood sociodemographic characteristics (e.g., 

household income).  

• Estimating models predicting pedestrian volumes at signalized intersections as a 

function of land use, built environment, and transportation system characteristics. 

These direct-demand models were log-linear, controlled spatial autocorrelation, 

and were segmented by day of the week and time of day.  

• Applying estimated models to unsignalized intersections and predicting pedestrian 

volumes at signalized and unsignalized intersections. This resulted in pedestrian 

volume estimates for over 62,000 unsignalized intersections in Utah. Model 

validation utilized a 10-fold cross-validation approach.  

• Developing a prototype online tool and graphical interface to visualize estimated 

pedestrian volumes at signalized and unsignalized intersections. This visualization 

was an ArcGIS online map showing average estimated pedestrian volumes overall 

and for different days of the week and times of day.  

• Providing recommendations for implementation and future work.  

1.4  Outline of Report  

This report is organized into the following chapters:  

• Chapter 1.0 provides an introduction to the research, including the problem 

statement, objectives, scope, and outline of the report.  

• Chapter 2.0 describes the research methods, including a literature review of 

pedestrian volume modeling studies, built environment predictors of pedestrian 

volumes, and traffic signal-based measures of pedestrian activity, as well as a 

description of direct-demand volume modeling.  
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• Chapter 3.0 contains details about the data collection, including estimated 

pedestrian volumes from traffic signal data and built environment data.  

• Chapter 4.0 reports on data evaluation aspects, including results of the direct-

demand models of daily and hourly pedestrian volumes, model validation results, 

and model application and visualization.  

• Chapter 5.0 offers conclusions, including key findings as well as study limitations 

and challenges.  

• Chapter 6.0 provides recommendations for implementation of the findings.  
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2.0  RESEARCH METHODS 

2.1  Overview 

This chapter describes the research methods, including a literature review of pedestrian 

volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal-

based measures of pedestrian activity, as well as a description of direct-demand volume 

modeling. 

2.2  Literature Review 

Two general threads of research have investigated built environment correlates of 

pedestrian counts or volumes. One research path is motivated by developing models to predict 

pedestrian demand for use in various transportation engineering, planning, and safety analysis 

tasks. For example, Schneider et al. (2009) describe several applications of such models: to 

“quantify pedestrian exposure in safety analysis,” prioritize pedestrian projects, design pedestrian 

infrastructure, predict pedestrian volumes in the future, analyze crossings warrants, and evaluate 

commercial visibility (p. 13). In these studies, built environment characteristics predict 

pedestrian counts and are used to estimate pedestrian volumes in areas where data have not been 

collected. The other strand of research focuses on understanding relationships between urban 

design characteristics and walking activity to inform planning and design for walkable, healthy 

cities. These studies often focus on measuring more detailed and complex attributes of urban 

form and the built environment, including the so-called “D” variables (e.g., development density, 

land-use diversity, street network design, destination accessibility, and distance to transit) 

(Ewing and Cervero, 2010), urban design qualities of the streetscape (Ewing and Handy, 2009), 

and/or street network connectivity elements derived from Space Syntax (Hillier, 2007). A 

simplified characterization is that studies of the first kind focus primarily on pedestrian volumes 

and secondarily on built environment measures, while studies of the second kind do the opposite. 

Of course, some research straddles the boundaries of the two kinds (Raford and Ragland, 2006, 

2004).  
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Two tables in this section summarize the methods, outcomes, and predictors used in 

studies modeling pedestrian volumes as a function of built environment measures. We focus on 

studies with models of pedestrian counts or volumes, not on literature using individual- or 

household-based measures of walking behavior. We also exclude studies that group walk and 

bicycle traffic together into one non-motorized mode. 

2.2.1  Pedestrian Volume Modeling Studies 

As shown in Table 2-1, most pedestrian volume direct-demand models utilize manually 

collected, short-duration counts of the number of people walking along street segments or 

crossing at intersections. Sometimes these counts are as short as 30 or even 10 minutes (or 

multiple 5-minute counts), but rarely do they exceed 12 hours. These short durations are not 

surprising, given the cost and effort of conducting manual pedestrian counts at multiple locations 

(Ryus et al., 2014). One exception is the one week of automated pedestrian counts conducted in 

Blacksburg, Virginia (Hankey et al., 2017; Lu et al., 2018). For models relating pedestrian 

volumes to the built environment, studying many sites is critical for both the power of the 

analysis (to detect statistically significant associations) and the generalizability of results (across 

varied locations). Most research builds models using data from between several dozen and 

several hundred locations. Three exceptions are the 1,018 signals in Montréal (Miranda-Moreno 

and Fernandes, 2011), the 1,270 intersections throughout California (Griswold et al., 2019), and 

the nearly 10,000 street segments with pedestrian counts in Seoul, South Korea (e.g., Kim et al., 

2019). 

Table 2-1: Summary of Pedestrian Volume Modeling Studies 

 Information   Pedestrian   Model  

Study Geography Locations Time Outcome Method Details Type Fit 

Pushkarev and 

Zupan (1971) 

Manhattan, New 

York City, New 

York, US 

≤605 block 

faces 

1969 

Apr–

Jun 

Volume, 

instant 

AP Twice, WD, 

MD & PM 

L 0.23–

0.61 

Behnam and 

Patel (1977) 

Downtown 

Milwaukee, 

Wisconsin, US 

? street 

segments 

1971–

1973 

Sum 

Volume, 1 hr MC Multiple 

times 6 min, 

WD, DT 

LL 0.58 

Hillier et al. 

(1993) 

Central London, 

England, UK 

≤239 street 

segments 

?? Volume MC 20-30 times, 

AM & MD & 

PM 

LL 0.29–

0.57 

Penn et al. 

(1998) 

Central London, 

England, UK 

7 street 

segments 

?? Volume, 50 

min 

MC Ten times 5 

min, AM & 

MD & PM 

CR 0.98 
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Qin and Ivan 

(2001) 

Rural 

Connecticut, US 

32 crossings 1999 

May, 

Jun, 

Oct, 

Nov 

Crossing 

volume 

MC Twice 9.5 hr, 

WD & WE, 

DT 

LL 0.81–

0.91 

Desyllas et al. 

(2003) 

Central London, 

England, UK 

231 street 

segments 

1999 

Aug, 

2000 

Mar, 

2001 

Jul 

Volume, 1 hr MC Multiple 5 

min, DT 

LL 0.82 

Raford and 

Ragland (2004) 

Oakland, 

California, US 

42 

intersections 

?? Volume, 1 

year 

(extrapolated) 

MC Multiple 2 hr, 

WD & WE, 

AM & PM 

?? 0.77 

Liu and 

Griswold 

(2009) 

San Francisco, 

California, US 

63 

intersections 

2002 

May, 

Jun, 

Aug, 

Sep 

Crossing 

volume 

MC Once 4 hr, 

WD, PM 

L, SA 0.75 

Miranda-

Moreno et al. 

(2011)   

Montréal, 

Quebec, CA 

519 

signalized 

intersections 

2003 

Spr–

Sum 

Volume MC Three times 1 

hr, WD, AM 

& MD & PM 

LL 0.55 

Raford and 

Ragland (2006) 

Boston, 

Massachusetts, 

US 

82 locations 2004 

Aug 

Volume MC 24 times 5 

min, WD & 

WE, DT 

?? 0.79–

0.86 

Pulugurtha and 

Repaka (2013,  

2008) 

Charlotte, North 

Carolina, US 

176 

signalized 

intersections 

2005 Volume, 12 hr MC Once 12 hr, 

DT 

L 0.15–

0.86 

Rodríguez et 

al. (2009) 

Bogotá, Distrito 

Capital, CO 

338 street 

segments 

2005 

Jun–

Aug 

Volume, 10 

min 

MC Once 10 min, 

WD, AM 

NB 0.03 

Ewing et al. 

(2016),  Ewing 

and Clemente 

(2013) 

New York City, 

New York, US 

588 block 

faces 

2006 

Sum 

Volume MC Four times, 

WD, DT 

NB, SA ?? 

Arnold et al. 

(2010) 

San Diego 

County, 

California, US 

80 locations 2007 

Jul–

Aug, 

2008 

Volume, 2 hr 

(adjusted) 

MC Twice 2 hr, 

WD & WE, 

AM or MD 

or PM 

LL 0.52 

Hajrasouliha 

and Yin (2015) 

Buffalo, New 

York, US 

302 street 

segments 

2007–

2010 

Volume MC Twice, WD, 

DT 

L ?? 

Hankey et al. 

(2012) 

Minneapolis, 

Minnesota, US 

259 

street/path 

segments 

2007–

2010 

Sep 

Volume, 12 hr 

(extrapolated) 

MC 2 hr or 12 hr, 

WD, PM or 

DT 

NB 0.42 

Hankey and 

Lindsey (2016) 

Minneapolis, 

Minnesota, US 

471 

street/trail 

segments 

2007–

2014 

Sep 

Volume, 1 hr MC Various 2 hr, 

PM 

LL 0.50–

0.53 

Tabeshian and 

Kattan (2014) 

Calgary, 

Alberta, CA 

34 

intersections 

2007–

2012 

Volume, 2 hr MC Three times 2 

hr, AM & 

MD & PM 

L, P 0.79–

0.92 

Schneider et al. 

(2009) 

Alameda 

County, 

California, US 

50 

intersections 

2008 

Apr–

Jun 

Crossing 

volume, 1 

week 

(extrapolated) 

MC Twice 2 hr, 

WD & WE, 

AM or MD 

or PM 

L 0.89 
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Miranda-

Moreno and 

Fernandes 

(2011) 

Montréal, 

Quebec, CA 

1,018 

signalized 

intersections 

2008-

2009 

Crossing 

volume 

MC Once 8 hr, 

WD, AM & 

MD & PM 

LL 0.58 

Ozbil et al. 

(2011) 

Atlanta, 

Georgia, US 

157 locations ?? Volume MC 20 times (or 

ten times 20 

min), DT & 

PM 

LL 0.82–

0.84 

Kang (2018, 

2017, 2015), 

Kim et al. 

(2019, 2017), 

Sung et al. 

(2013, 2015) 

Seoul, KR ≤9,850 street 

segments 

2009 

Aug–

Nov 

Volume MC Six times 14 

hr, WD & 

WE, DT 

LL, SA 0.24–

0.81 

Schneider et al. 

(2012) 

San Francisco, 

California, US 

50 

intersections 

2009 

Sep, 

2010 

Jul–

Aug 

Crossing 

volume, 1 

year 

(extrapolated) 

MC Once 2 hr, 

WD, AM or 

PM 

LL 0.80 

Ameli et al. 

(2015) 

Downtown Salt 

Lake City, 

Utah, US 

179 block 

faces 

2012 

Sep–

Oct 

Volume MC Twice 30 

min, WD, 

MD & PM 

NB ?? 

Maxwell 

(2016) 

Glasgow, 

Scotland, UK 

693 street 

segments 

2014–

2015 

Sum 

Volume MC Four times, 

WD, DT 

NB, SA ?? 

Sanders et al. 

(2017) 

Seattle, 

Washington, US 

49 

intersections 

?? Volume, 1 

year 

(extrapolated) 

MC ??, PM P 0.76 

Hankey et al. 

(2017), Lu et 

al. (2018) 

Blacksburg, 

Virginia, US 

72 locations 2015 

Apr–

Oct 

Volume, 1 day 

& 1 hour 

(averaged) 

AC Once 1 wk LL 0.71, 

0.00–

0.78 

Park et al. 

(2019) 

Salt Lake 

County, Utah, 

US 

881 block 

faces 

2015 Volume MC Four times, 

WD, DT 

NB, SA ?? 

Hamidi and 

Moazzeni 

(2019) 

Downtown 

Dallas, Texas, 

US 

402 block 

faces 

2016 

Spr-

Sum 

Volume, 30 

min 

MC Once 30 min, 

WD, PM 

NB, SA ?? 

Le et al. (2020) Dallas, Texas, 

US 

196 

intersections 

2016 Volume 1 day 

(extrapolated) 

MC Once 2 hr or 

8 hr 

NB ?? 

Griswold et al. 

(2019) 

California, US 1,270 

intersections 

2006–

2016 

Crossing 

volume, 1 

year 

(extrapolated) 

MC Various 1-86 

hr, most two 

times 2 hr, 

AM & PM 

LL 0.71 

Schneider et al. 

(2021) 

Milwaukee, 

Wisconsin, US 

260 

intersections 

2013–

2018 

Crossing 

volume, 1 

year 

(extrapolated) 

MC Various, 

many 13 hr, 

AM & MD & 

PM 

NB ?? 

This study Utah, US 1,020 

signalized 

intersections 

2017 

Jun – 

2018 

Jul 

Estimated 

volume,  

1 day & 1 

hour 

(averaged) 

AC Continuous LL, SA  

Notes:  ?? = unknown.  

Method: AC = automated counts, AP = aerial photos, MC = manual counts.  

Details: WD = weekday, WE = weekend, AM = morning peak, MD = midday, PM = evening peak, DT = daytime.  
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Type:  L = linear, LL = log-linear (linear with natural log transformation), CR = linear with cube-root 

transformation, P = Poisson, NB = negative binomial,  

SA = checked or corrected for spatial autocorrelation.  

Fit:  R2 or pseudo-R2. 

 

The data collection methods used to obtain pedestrian volumes for most previous 

research led to some limitations in the accuracy, generalizability, and sensitivity of model results. 

First, the use of short-duration counts to represent average or typical volumes—even when 

adjusted for time of day and weather using a smaller number of longer-duration automated 

counts—adds measurement error to the dependent variable. This potentially affects the value and 

significance of estimated associations. Second, the short time periods typically studied—often 

weekdays during daytime or morning/midday/evening peak hours—limits the ability of models 

to consider temporal variations in relationships between the built environment and pedestrian 

volumes. There may be interesting and policy-relevant variations by time of day, day of week 

(weekdays vs. weekends), and season. Third, the number of locations studied—usually less than 

1,000 and sometimes less than 100—can limit both the generalizability of findings as well as the 

statistical power to detect significant associations. 

2.2.2  Built Environment Predictors in Pedestrian Volume Modeling Studies 

In pedestrian volume models, some built environment measures (see Table 2-2) are 

consistently related to walking in expected directions, while results for other variables are more 

equivocal. More often than not, studies find positive associations with residential and 

employment density. Walking is also closely linked to public transit: Locations closer to transit 

stops/stations and with more transit stops nearby tend to see greater pedestrian volumes. 

Diversity measures like land-use mix and entropy are sometimes positively related to pedestrian 

volumes, but studies also find insignificant or even negative relationships. More studies find null 

or unexpectedly negative results than positive results for traditional street network design 

variables like intersection density and percentage of four-way intersections. Studies of street 

network configurations tend to find positive associations with space syntax measures like 

integration. Studies of urban design and streetscape qualities tend to find positive associations 

with imageability (the quality of a place that makes it distinct, recognizable and memorable) and 

transparency (the degree to which people can see or perceive human activity beyond the edge of 
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a street; Park et al., 2019). A few studies have found that pedestrian volumes are significantly 

explained by socioeconomic and environmental variables like household size, household 

incomes, parks, and slope. 

Table 2-2: Summary of Built Environment Predictors of Pedestrian Volumes 

Variable Dir.a Studies 

Density   

Floor area ratio or 

building density 

+ (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi 

and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019; Sung 

et al., 2013) 

 ns / − (Ameli et al., 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013) 

Population density, 

household density, or 

residential space 

density 

+ (Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing et al., 

2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Lindsey, 

2016; Hankey et al., 2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et al., 

2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; 

Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragland, 

2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Tabeshian and 

Kattan, 2014) 

 ns / − (Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Maxwell, 

2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 2013, 

2008; Rodríguez et al., 2009) 

Employment density, 

employment access, or 

commercial/office/non-

residential space 

density 

+ (Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019; 

Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kang, 2017, 2015; 

Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 2011; 

Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; 

Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and 

Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Sung 

et al., 2013; Tabeshian and Kattan, 2014)  

 ns / − (Hankey et al., 2012; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; 

Rodríguez et al., 2009; Sung et al., 2013) 

Diversity   

Land-use mix, entropy, 

balance, or % retail 

+ (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; 

Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswold, 

2009; Park et al., 2019; Sung et al., 2013) 

 ns / − (Ameli et al., 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and 

Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 

2016; Park et al., 2019) 

Transit   

Distance to nearest 

rail/bus stop/station 

− (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi 

and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 

2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; 

Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 2013, 

2015) 

 ns / + (Hankey et al., 2012; Park et al., 2019; Raford and Ragland, 2006; Rodríguez et 

al., 2009) 

Transit stop density + (Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009; Lu 

et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 

2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider et al., 

2009, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014) 

 ns / − (Kang, 2017, 2015; Le et al., 2020) 

Street network design   

Intersection density + (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) 
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 ns / − (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hankey 

and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Lu et al., 

2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013) 

% 4-way intersections + (Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et 

al., 2019) 

 ns / − (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 

2016; Park et al., 2019; Sung et al., 2013) 

Block length + (Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda-

Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; 

Tabeshian and Kattan, 2014) 

 ns / − (Ameli et al., 2015; Hamidi and Moazzeni, 2019; Park et al., 2019) 

Space syntax 

(integration, reach, 

betweenness, etc.) 

+ (Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015; 

Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004) 

 ns / − (Kang, 2017, 2015) 

Socioeconomics   

Household size + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 

2019)  

 ns / − (Hamidi and Moazzeni, 2019; Maxwell, 2016) 

Mean/median income − (Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and Repaka, 

2013) 

 ns / + (Hankey et al., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repaka, 

2013, 2008; Rodríguez et al., 2009; Schneider et al., 2021; Tabeshian and 

Kattan, 2014) 

Environmental   

Park density or 

proximity 

+ (Kang, 2017, 2015) 

 ns / − (Kang, 2017, 2015; Miranda-Moreno and Fernandes, 2011; Schneider et al., 

2021; Sung et al., 2013) 

Slope or grade − (Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009; 

Schneider et al., 2012; Sung et al., 2013, 2015) 

 ns / + (Griswold et al., 2019) 
a Association with pedestrian volume: “+” positive, “–” negative, “ns” not statistically significant.  

 

2.2.3  Traffic Signal-Based Measures of Pedestrian Activity 

In this study, we mitigate some of these limitations by utilizing a new source of 

pedestrian data: estimated pedestrian crossing volumes at signalized intersections, taken from 

pedestrian push-button events recorded in archived high-resolution traffic signal controller logs 

(Sturdevant et al., 2012). Assuming a traffic signal includes walk indications and pedestrian 

detection (usually push-buttons), at least two relevant pedestrian events can be recorded. Event 

code 90 (“pedestrian detector on”) occurs whenever a pedestrian push-button is activated 

(pressed), which could happen multiple times per cycle. Event code 45 (“pedestrian call 

registered”) occurs when a call to service a walk phase is registered, which usually happens just 

once per cycle for a particular phase or crossing (upon the first pedestrian detection event). In 
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recent years, several studies have investigated the use of pedestrian signal data for different 

purposes, including for pedestrian volume estimation (Blanc et al., 2015; Day et al., 2011; 

Kothuri et al., 2017; Li and Wu, 2021; Noyce and Bentzen, 2005; Singleton and Runa, 2021). 

More generally, high-resolution traffic signal event data are beginning to be used in a variety of 

other research and operational contexts (Wu and Liu, 2014), including through Automated 

Traffic Signal Performance Measures (ATSPM) systems (Day et al., 2016).  

To our knowledge, this is the first study to relate traffic signal-based measures of 

pedestrian activity with built environment characteristics. Recall the three limitations of the 

short-duration manual count pedestrian volume data typically used in prior built environment 

direct-demand models: measurement error due to factoring, an inability to model temporal 

variations, and the small number of locations studied. Since traffic signal data are recorded 

continuously (24 hours a day, 365 days a year), they can overcome the second limitation. The 

third limitation is constrained only by the number of signalized intersections with such data in an 

area. Regarding the first limitation, we replace the measurement error associated with factoring 

short-duration counts with the error due to the fact that pedestrian push-button data may not be a 

perfect measure of pedestrian crossing volumes. One person may press the push-button multiple 

times (although, only one pedestrian call would be registered), or a group of pedestrians may not 

press the button at all. Nevertheless, prior research looking at a couple days of data at one 

intersection in Oregon found correlations of around 0.80 or greater between pedestrian actuations 

and crossing volumes (Blanc et al., 2015; Kothuri et al., 2017). Another study looked at two mid-

block crossings in Arizona over several days and estimated pedestrian crossing volumes from 

push-button data with a mean error of around ±2 pedestrians per hour (Li and Wu, 2021).  

A recent large-scale research effort in Utah investigating the feasibility of pedestrian 

traffic signal data for pedestrian volume estimation found similar levels of accuracy. Singleton et 

al. (2020; Singleton and Runa, 2021) collected traffic signal data as well as video recordings of 

pedestrian crossing events at 90 randomly selected signalized intersections across Utah in 2019. 

Almost 175,000 pedestrians were manually counted during more than 10,000 hours of video, 

covering different months, weekdays, and hours. The authors then developed simple non-linear 

(quadratic and piecewise linear) regression models predicting hourly pedestrian crossing 

volumes as a function of constructed measures of pedestrian signal data (pedestrian actuations, 
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and unique pedestrian detections (removing those within 15 seconds of another detection)). For 

ease of application, the models did not include traffic volumes or neighborhood 

socioeconomic/environmental characteristics, although they did account for non-linear 

relationships between push-button use and pedestrian volumes (high vs. low pedestrian activity 

signal) and different traffic signal operations (phase on pedestrian recall or not, short vs. long 

average cycle length; HAWK signal vs. traditional signal). Over more than 22,500 crossing-

hours of observations, the correlation between observed and model-predicted hourly pedestrian 

crossing volumes was 0.84; most models had correlations close to 0.90, and the mean error was 

±3 pedestrians per hour (Singleton et al., 2020; Singleton and Runa, 2021). Thus, these results 

along with other recent research (Blanc et al., 2015; Kothuri et al., 2017; Li and Wu, 2021) 

suggest that pedestrian signal data can be used to estimate pedestrian crossing volumes with 

reasonable accuracy. Based on these prior research findings, we think the tradeoff in the sources 

of error in the dependent variable (factoring short-duration counts vs. adjusting pedestrian push-

button data) is reasonable. 

2.3  Direct-Demand Volume Modeling 

As previously mentioned in Sections 1.1 and 2.2, direct-demand modeling is a frequently 

used approach for estimating non-motorized travel (Kuzmyak et al., 2014), including pedestrian 

volumes. Direct-demand models predict pedestrian volumes using observed counts and measures 

of the surrounding streetscape, land uses, built environment, and street network. Such models 

help to understand how environmental features affect pedestrian volumes and inform 

transportation and land-use planning and urban design strategies to promote walkable 

communities. In the following subsections, we describe details about how direct-demand models 

are estimated and validated.  

2.3.1  Log-Linear Regression 

Consistent with many other studies using built environment characteristics to predict 

pedestrian volumes (see Table 2-1), we employed a log-linear regression model in which our 

dependent variable is transformed using the natural log function. In general, log-linear regression 
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is used to predict a dependent variable (which may be skewed or the result of count data) using a 

variety of categorical or continuous independent variable predictors. Specifically:  

log(𝑌𝑖) = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 

where log(𝑌𝑖) is the log-transformed dependent variable 𝑌𝑖 (in our case, annual average daily 

pedestrian (AADP) crossing volume at an intersection i), 𝛽0 is an intercept, 𝛽1 is a slope 

coefficient associated with an independent variable 𝑋𝑖 (in our case, one of several built 

environment characteristics), and 𝜀𝑖 is a random error term that is normally distributed. The 

dependent and independent variables (e.g., density, household attributes, land use, local 

destinations) are introduced in Chapter 3.0. 

We decided against applying a negative binomial (or Poisson-gamma mixture) regression 

model—traditionally used to model count data—because our pedestrian data are not actually 

count data; instead, they are averages of counts. We used the log transformation because our data 

are strictly positive and are positively skewed (Figure 2-1). An implication of the log-

transformed dependent variable is that we can interpret our estimated coefficients (when 

exponentiated) as proportional or percentage changes (rather than absolute changes) in 

pedestrian signal activity due to changes to our independent variables. 
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Figure 2-1: Histogram of Annual Average Daily Pedestrian (AADP) Crossing Volume 

(Top: AADP; Bottom: Log-Transformed AADP; Dashed Vertical Line: Mean) 

 

2.3.2  Spatial Lag or Spatial Error Model 

The pedestrian data in this study may have an issue of spatial autocorrelation, meaning 

that the estimated pedestrian activity at one signal is correlated with activity at nearby signals. 

Reasons for this might include walk trips that extend from one block to the next, similar 

demographics or urban form characteristics, or a large-scale destination in one block (e.g., a 

regional park, convention center, or theater). Moran’s I statistic is a commonly used measure to 

check for spatial autocorrelation. Any spatial pattern in the residuals violates the assumption of 

regression models that residuals are independent of each other and randomly distributed. Before 
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controlling for the spatial autocorrelation, Moran’s I for model residuals in this study (p < .001) 

indicated a strongly positive spatial relationship.  

The spatial lag or error model can be used as a robust tool to deal with the spatial 

autocorrelation issue in ordinary least squares (OLS) regression. The Lagrange multiplier test is 

used to assess whether the autocorrelation is in the dependent variable or in the errors and helps 

in the choice of a spatial regression model. The robust Lagrange multiplier test indicated a spatial 

error model as the most suitable method, and thus, we employed spatial error models that treat 

spatial autocorrelation between the residuals of adjacent areas. We ran spatial error models using 

errorsarlm function (spdep package) in R 3.6.1 software. The Moran’s I values for the final 

models’ residuals (p > .05), indicated no spatial autocorrelation.  

2.3.3  Model Validation 

To test how well our models can predict actual pedestrian volumes, we evaluated the 

predictive performance of our models by running k-fold cross-validation (Fielding and Bell, 

1997; Hair et al., 2006). Using the same data to estimate parameters and to test predictive 

accuracy may overestimate model validity. In k-fold cross-validation, the data are divided into k 

equal partitions. In this study, data were randomly divided into ten folds: 90% of the data 

(training data) used for model fitting and 10% of the data withheld for model validation in each 

iteration. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE) are used as three measures of the prediction capability of regression 

models (Chai and Draxler, 2014; Willmott and Matsuura, 2005). This procedure is repeated for 

each of the k partitions, and the RMSE, MAE, and MAPE values are averaged to obtain the 

mean value. 

2.4  Summary 

Our review of pedestrian volume modeling studies found that most direct-demand models 

utilized manually collected, short-duration pedestrian counts at only a few dozen to a few 

hundred locations. Only one study used one week of automated counts, while only three studies 

used data from more than 1,000 sites. These practices result in study limitations: measurement 

error in the dependent variable, lower statistical power and lack of generalizability, and inability 
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to model temporal variations in built environment relationships with pedestrian volumes. Our 

research addresses many of these limitations through the use of a year’s worth of data from 

almost 1,500 signalized intersections. Research on traffic signal-based measures of pedestrian 

activity suggests that they are capable of predicting pedestrian volumes with reasonable 

accuracy. When conducting direct-demand pedestrian volume modeling, log-linear (or negative 

binomial) regression and accounting for spatial autocorrelation are best practices. Such models 

should also consider various measures of the built environment, including those related to 

density, transit service, street network design, demographics, and destinations.  
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3.0  DATA COLLECTION 

3.1  Overview 

This chapter contains details about the data collection, including estimated pedestrian 

volumes from traffic signal data and built environment data. 

3.2  Estimated Pedestrian Volumes from Traffic Signal Data 

The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis, 

Weber, Washington, and Cache. Cumulatively, these six counties comprise 84% of Utah’s 

population and contain most of the roughly 2,100 traffic signals in the state. Figure 3-1 shows a 

map of the traffic signals located within the six study counties in Utah. The Utah Department of 

Transportation (UDOT) has helped lead the development and deployment of the ATSPM system 

(Day et al., 2016) through which archived traffic signal controller event logs can be accessed. As 

of Fall 2018, UDOT was actively archiving data from more than 1,900 state- and locally owned 

signals in a central database (Taylor and Mackey, 2018). 
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Figure 3-1: Map of Signalized Intersections in the Six Most Populous Counties in Utah 
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Our pedestrian volume data are estimates of annual average daily pedestrian (AADP) 

crossing volumes at signalized intersections, derived from pedestrian activity events recorded in 

high-resolution traffic signal controller event logs. For this study, we obtained one year—01 July 

2017 through 30 June 2018—of pedestrian data from all traffic signals in our study area. After 

cleaning the data to remove missing observations, we applied the pedestrian volume estimation 

methods developed by Singleton et al. (2020; Singleton and Runa, 2021) to the pedestrian signal 

data. Next, we aggregated (over hours in a day and crossings at an intersection) and averaged 

(over days in the year) those estimates to calculate AADP at each signal. We then removed 143 

locations with effectively no pedestrian activity (less than 1 per day); the vast majority of these 

were signals with no pedestrian push-buttons, either in dense downtowns (where signals operated 

on pedestrian recall) or in isolated locations (such as highway off-ramps and industrial areas). 

After this process, we were left with 1,494 signals for our models. AADP ranged from 1 to 

nearly 6,700, with a median of about 110 and a mean of about 270. The distribution of AADP 

was positively skewed and leptokurtic. Since our data are available continuously throughout the 

year, we also calculated AADP for weekdays vs. weekends. In addition, we calculated the annual 

average hourly pedestrian (AAHP) crossing volumes for various times of day. As noted in the 

literature review, most studies do not collect enough data to analyze time-of-day variations, so 

we think our ability to model both average daily and average hourly pedestrian volumes is a 

relatively unique contribution. Descriptive statistics for the pedestrian volume-dependent 

variables are shown in Table 3-1. 

Table 3-1: Descriptive Statistics for Dependent Variables 

Variable  Min Med Max Mean SD 

Estimated annual average daily pedestrians (AADP) 1.08 116.13 6737.22 267.28 519.00 

Weekdays (Monday–Friday) 1.12 133.15 7547.23 300.66 598.50 

Weekends (Saturday–Sunday) 0.61 77.52 4712.21 183.82 352.54 

Estimated annual average hourly pedestrians (AAHP) 0.04 4.84 280.72 11.14 21.63 

00:00–02:59 0.00 0.43 46.86 1.58 3.98 

03:00–05:59 0.00 0.49 53.81 1.41 3.65 

06:00–08:59 0.01 4.85 269.93 10.19 19.38 

09:00–11:59 0.05 5.84 418.02 14.53 30.99 

12:00–14:59 0.04 8.31 536.79 19.70 41.19 

15:00–17:59 0.09 9.69 487.00 21.52 41.51 

18:00–20:59 0.05 5.46 366.67 14.00 28.76 

21:00–23:59 0.01 2.26 135.23 6.16 12.34 

 



 

24 

We have also visualized AADP and AAHP pedestrian crossing volumes on a map. To do 

this, we chose to use ArcGIS Online and create an online web map. The “Estimated Pedestrian 

Volumes at Signalized Intersections (1,494) in Utah” is available for public viewing here: 

https://arcg.is/0S84Wf. A direct link to the map itself is here: https://arcg.is/1aTT4f. A 

screenshot of the map showing overall (any day) estimated AADP volumes for traffic signals in 

Salt Lake County is shown in Figure 3-2.  

 

Figure 3-2: Estimated Annual Average Daily Pedestrian (AADP) Volumes at Traffic 

Signals in Salt Lake County, Utah 

 

3.3  Built Environment Data 

Neighborhood built environment variables were measured for two different buffer 

widths—½-mile and ¼-mile—in a belief that the number of pedestrians may depend on the 

neighborhood environment at different scales. For example, the influence of road traffic volume 

on pedestrian activity may only be significant over a short distance while that of street network 

connectivity may be more extensive. A quarter-mile and a half-mile were selected as a standard 

https://arcg.is/0S84Wf
https://arcg.is/1aTT4f
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walking distance beyond which walk frequency drops off rapidly; they are used in most travel 

behavior literature (Ewing and Clemente, 2013; Nagel et al., 2008). Thus, using the “Network 

Analyst” tool in the ArcGIS Pro software, we created street network-based buffers by ½-mile 

and ¼-mile for every signalized intersection.  

For the predictors of pedestrian signal activity, we measured “D” variables—density, 

diversity, design, destination accessibility, and distance to transit—as well as socioeconomic 

factors. For density variables, we measured population density (number of 1,000 people per 

square mile) and employment density (number of 1,000 jobs per square mile). The population 

data came from the American Community Survey (ACS) 2013-2017 at the Census block group 

level, and the employment data (2017) were collected from the Longitudinal Employer-

Household Dynamics (LEHD) at the Census block level. Then, the data were assigned to the 

buffers based on the relative areas of the Census boundaries (i.e., the spatial apportioning 

technique). For the land-use variables, we compiled parcel-level land-use maps from the Utah 

Automated Geographic Reference Center (AGRC) for the year 2019 and computed the 

percentage of residential parcels, percentage of commercial parcels, number of schools, number 

of places of worship, and total acreage of parks.  

For a transit variable, we measured the number of transit stops in each buffer area. 

Transit stop location data in 2019 was available at OpenMobilityData (https://transitfeeds.com/) 

as a form of General Transit Feed Specification (GTFS). Also, two gross measures of street 

network design were computed, using intersection location data provided by the Metropolitan 

Research Center at the University of Utah. Intersection density (a measure of the block size) was 

computed as the number of intersections within a buffer divided by the gross area of the buffer in 

square miles. The proportion of four-way intersections (a measure of street connectivity) was 

computed as the number of four-way intersections divided by the total number of intersections 

within the buffer area.  

Three demographic variables were also included—average household size, median 

household income, and average vehicle ownership—for block groups intersecting with the 

buffer. We hypothesized that more affluent residents with more vehicles available might walk 

less and drive more, while bigger households might walk more (Ewing et al., 2015; Owen et al., 
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2007). Data for demographic measures were gathered from the ACS (2017 5-year estimates) and 

assigned to the buffer using the spatial apportioning technique described above. Lastly, as a 

measure of traffic safety, we included road types for roads near the intersection. Road types were 

divided into three categories based on the cartographic code of road centerline data, provided by 

UDOT: highways (interstates, US and state highways, and associated ramps), major roads 

(“major local roads” such as arterials), and local roads (the rest, including collectors). (We 

wanted to include Annual Average Daily Traffic (AADT) volumes in the model, but they were 

not available for several signals and most intersections where one would want to apply these 

data. Also, preliminary models found AADT to be not significantly associated with pedestrian 

volumes.) 

Table 3-2 shows descriptive statistics for the built environment variables. Within a given 

buffer width, all correlations between these variables were low to moderate (< 0.55) except for a 

negative correlation between residential and commercial land uses (-0.75). Also, the highest 

variance inflation factor (VIF) values in the regression models were lower than 5. Therefore, we 

conclude that multicollinearity among independent variables was not an issue. 

Table 3-2: Descriptive Statistics for Independent Variables 

 ¼-mile ½-mile 

Variable Mean SD Mean SD 

Population density (1,000 per sq. mi.) 4.39 2.80 4.44 2.55 

Employment density (1,000 per sq. mi.) 5.60 8.10 4.85 6.31 

Household size (average) 3.09 1.09 3.10 0.98 

Household income ($1,000) 59.75 23.21 60.27 22.40 

Vehicle ownership 1.68 0.51 1.69 0.47 

% residential land use 31.02 22.72 37.17 21.37 

% commercial land use 29.38 20.11 24.74 16.86 

Intersection density (per sq. mi.) 97.97 49.01 100.32 38.86 

% 4-way intersections 28.46 21.88 25.79 16.61 

# schools 0.30 0.62 0.92 1.18 

# places of worship 0.52 0.80 1.79 1.84 

# transit stops 4.81 3.94 12.71 9.93 

Park acreage 1.46 3.59 5.54 9.10 

 

3.4  Summary 

The outcome data (dependent variables) are pedestrian crossing volumes, estimated from 

traffic signal data. To obtain these volumes, we used one year of ATSPM data (July 2017 
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through June 2018) at 1,494 signalized intersections in the six most populous Utah counties and 

applied the factoring methods developed in the Phase I project (Singleton et al., 2020). We then 

calculated the average annual daily and hourly pedestrian (AADP, AAHP) volumes overall and 

for weekdays vs. weekends and each three-hour period during the day. The input data 

(independent variables) are measures of the locations surrounding each signal related to land use, 

the built environment, the transportation system, and neighborhood demographics. Data came 

from a variety of sources and was measured using quarter-mile and half-mile network buffers.  
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4.0  DATA EVALUATION 

4.1  Overview 

This chapter reports on data evaluation aspects, including results of the direct-demand 

models of daily and hourly pedestrian volumes, model validation results, and model application 

and visualization. 

4.2  Results for Annual Average Daily Pedestrians by Day of Week 

Table 4-1 shows three models for daily pedestrian activity (AADP) for all days, 

weekdays, and weekends, respectively. Lambda represents a coefficient on the spatially 

correlated errors (Anselin and Rey, 2010): it has a positive effect and is statistically significant in 

all models. 

Table 4-1: Model Results, Annual Average Daily Pedestrians  

n=1,494 signals Day of week (AADP) 

 All days Mon–Fri Sat–Sun 

Variable B SE siga B SE siga B SE siga 

(Intercept) 2.747 0.234 * 2.897 0.235 * 2.275 0.242 * 

Population density (½-mile)b 0.326 0.059 * 0.344 0.059 * 0.373 0.061 * 

Employment density (¼-mile)b 0.124 0.028 * 0.136 0.028 * 0.070 0.029 * 

Household size (¼-mile)b 0.418 0.102 * 0.452 0.103 * 0.146 0.106  

Household income (½-mile) -0.010 0.002 * -0.010 0.002 * -0.008 0.002 * 

Vehicle ownership (½-mile) -0.198 0.072 * -0.217 0.073 * -0.103 0.075  

% residential (¼-mile) 0.006 0.002 * 0.006 0.002 * 0.006 0.002 * 

% commercial (¼-mile) 0.019 0.002 * 0.019 0.002 * 0.022 0.002 * 

Intersection density (½-mile) 0.004 0.001 * 0.004 0.001 * 0.004 0.001 * 

% 4-way intersections (½-mile) 0.006 0.002 * 0.006 0.002 * 0.008 0.002 * 

# schools (¼-mile) 0.155 0.039 * 0.170 0.039 * 0.065 0.041  

# places of worship (½-mile) 0.060 0.020 * 0.054 0.021 * 0.080 0.021 * 

# transit stops (¼-mile) 0.068 0.008 * 0.069 0.008 * 0.066 0.008 * 

Park acreage (½-mile)b 0.022 0.007 * 0.023 0.007 * 0.025 0.007 * 

Road type (major road dummy) 0.242 0.053 * 0.245 0.053 * 0.245 0.055 * 

Model diagnosticsc Lambda: 0.49 

AIC: 3772 

Lambda: 0.49 

AIC: 3784 

Lambda: 0.46 

AIC: 3909.7 
a *: p<.05; ~: p<.1 
b log-transformed 
c all Lambdas are p<.001 
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Most built environment variables—population density, employment density, % 

residential parcels, % commercial parcels, intersection density, % 4-way intersections, schools, 

places of worship, transit stops, and park acreage—were statistically significant at a p<.05 level 

and positively associated with the estimated average daily volumes of pedestrians. Among 

demographic variables, pedestrian volume increased with average household size and decreased 

with median household income and average vehicle ownership of households living near the 

intersection. Pedestrian volume increased significantly when the intersection contained major 

roads, compared with only highway or local road types.  

Notable day-of-week differences were also found. As expected, the number of schools 

near the intersection was not significant in the weekend model; so were two other demographic 

variables: household size and vehicle ownership. Albeit statistically significant across the three 

daily models, a higher coefficient for the employment density variable was found on weekdays 

while the population density variable had a bigger size effect on weekends. Also, the coefficient 

for places of worship was higher in the weekend model.  

4.3  Results for Annual Average Hourly Pedestrians by Time of Day 

Table 4-2 shows eight models for hourly pedestrian activity (AAHP) for specific times of 

day, in 3-hour windows from midnight to midnight. Lambda values had a positive effect and 

were statistically significant in all models.  
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Table 4-2: Model Results, Annual Average Hourly Pedestrians 

n=1,494 signals Time of day (AAHP) 

 12am–3am 3am–6am 6am–9am 9am–12pm 

Variable B SE siga B SE siga B SE siga B SE siga 

(Intercept) -1.203 0.262 * -0.965 0.254 * -0.013 0.246  -0.175 0.230  

Population density (½-mile)b 0.499 0.066 * 0.317 0.064 * 0.252 0.062 * 0.293 0.058 * 

Employment density (¼-mile)b 0.061 0.031 ~ 0.034 0.031  0.078 0.029 * 0.129 0.027 * 

Household size (¼-mile)b 0.092 0.115  0.266 0.111 * 0.420 0.107 * 0.377 0.100 * 

Household income (½-mile) -0.016 0.002 * -0.013 0.002 * -0.008 0.002 * -0.009 0.002 * 

Vehicle ownership (½-mile) -0.149 0.081 ~ -0.236 0.078 * -0.270 0.076 * -0.188 0.071 * 

% residential (¼-mile) -0.002 0.002  -0.003 0.002  0.008 0.002 * 0.004 0.002 ~ 

% commercial (¼-mile) 0.013 0.002 * 0.010 0.002 * 0.013 0.002 * 0.019 0.002 * 

Intersection density (½-mile) 0.001 0.001  0.002 0.001 ~ 0.003 0.001 * 0.004 0.001 * 

% 4-way intersections (½-mile) 0.005 0.002 * 0.002 0.002  0.005 0.002 * 0.007 0.002 * 

# schools (¼-mile) 0.008 0.044  -0.016 0.043  0.244 0.040 * 0.115 0.038 * 

# places of worship (½-mile) 0.052 0.023 * 0.040 0.022 ~ 0.049 0.021 * 0.069 0.020 * 

# transit stops (¼-mile) 0.047 0.009 * 0.046 0.009 * 0.060 0.008 * 0.074 0.008 * 

Park acreage (½-mile)b 0.017 0.007 * 0.016 0.007 * 0.020 0.007 * 0.019 0.006 * 

Road type (major road dummy) 0.203 0.059 * 0.258 0.058 * 0.258 0.055 * 0.230 0.051 * 

Model diagnosticsc Lambda: 0.47 

AIC: 4135.2 

Lambda: 0.44 

AIC: 4070.8 

Lambda: 0.51 

AIC: 3887.7 

Lambda: 0.51 

AIC: 3697.0 

  

n=1,494 signals Time of day (AAHP) 

 12pm–3pm 3pm–6pm 6pm–9pm 9pm–12am 

Variable B SE siga B SE siga B SE siga B SE siga 

(Intercept) 0.029 0.231  0.216 0.233  -0.420 0.237 ~ -0.826 0.241 * 

Population density (½-mile)b 0.334 0.058 * 0.343 0.059 * 0.388 0.060 * 0.498 0.061 * 

Employment density (¼-mile)b 0.147 0.028 * 0.121 0.028 * 0.112 0.028 * 0.116 0.029 * 

Household size (¼-mile)b 0.426 0.101 * 0.444 0.102 * 0.327 0.104 * 0.257 0.105 * 

Household income (½-mile) -0.010 0.002 * -0.010 0.002 * -0.010 0.002 * -0.013 0.002 * 

Vehicle ownership (½-mile) -0.169 0.071 * -0.191 0.072 * -0.131 0.073 ~ -0.133 0.074 ~ 

% residential (¼-mile) 0.005 0.002 * 0.006 0.002 * 0.005 0.002 * 0.002 0.002  

% commercial (¼-mile) 0.020 0.002 * 0.019 0.002 * 0.021 0.002 * 0.018 0.002 * 

Intersection density (½-mile) 0.004 0.001 * 0.004 0.001 * 0.004 0.001 * 0.003 0.001 * 

% 4-way intersections (½-mile) 0.006 0.002 * 0.006 0.002 * 0.008 0.002 * 0.007 0.002 * 

# schools (¼-mile) 0.167 0.039 * 0.159 0.039 * 0.079 0.039 * 0.030 0.040  

# places of worship (½-mile) 0.068 0.020 * 0.058 0.020 * 0.071 0.021 * 0.064 0.021 * 

# transit stops (¼-mile) 0.074 0.008 * 0.072 0.008 * 0.069 0.008 * 0.062 0.008 * 

Park acreage (½-mile)b 0.022 0.006 * 0.021 0.007 * 0.028 0.007 * 0.025 0.007 * 

Road type (major road dummy) 0.220 0.052 * 0.259 0.052 * 0.220 0.053 * 0.202 0.054 * 

Model diagnosticsc Lambda: 0.48 

AIC: 3741.6 

Lambda: 0.48 

AIC: 3764.2 

Lambda: 0.49 

AIC: 3810.5 

Lambda: 0.49 

AIC: 3857.6 
a *: p<.05; ~: p<.1 
b log-transformed 
c all Lambdas are p<.001 

 

 

Again, most built environmental variables were positively associated with the pedestrian 

volumes across the day at a p<.05 significance level: population density, employment density, % 

commercial parcels, intersection density, % 4-way intersections, places of worship, transit stops, 

and park acreage. Average household size (positively), median household income (negatively), 
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and vehicle ownership (negatively) were also statistically significant in most time-of-day models 

of pedestrian volume. Higher pedestrian volumes were found for intersections on major roads, as 

opposed to just highways or local road types.  

Some time-of-day differences were also found. The number of schools near an 

intersection was positively associated with pedestrian activity, but only during the daytime 

(6am–9pm). Residential land use became statistically non-significant during the nighttime (in the 

after-9pm or before-6am models). The slope coefficients of population density were higher 

during the nighttime (after-6pm models) while those of employment density were higher during 

the daytime (models for 9am–3pm). The coefficient for being on a major road (as opposed to a 

highway or local road) was stronger during peak hours (6am–9am and 3pm–6pm). 

4.4  Overall Results 

Table 4-3 shows the direction of significant effects for all independent variables in the 

three AADP and eight AADH models. Results from both the daily and hourly models confirm 

theoretically consistent relationships between built environment measures and pedestrian 

activity, as identified in Table 2-2 through the literature review. In general, more pedestrian 

activity was found in locations with greater density (greater population and employment density, 

higher shares of residential and commercial land uses), more transit access (greater transit stop 

density), more connected street networks (greater intersection density, higher share of four-way 

intersections), and closer to major destinations (parks, schools, and places of worship).  

Results from the day-of-week and time-of-day models also highlighted important 

temporal variations in built environment relationships with walking. Schools were significant 

and influential only when in session: on weekdays and during daytime hours, not on weekends or 

at night. As expected, employment density was less influential and/or not significant on 

weekends and at night, while residential density had larger coefficients at night and on 

weekends.  
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Table 4-3: Model Results, Overall 

n=1,494 signals Day of week 

(AADP) 

Time of day (AAHP) 

Variable 

All 

days 

Mon–
Fri 

Sat–

Sun 

12am

–3am 
3am–

6am 
6am–

9am 

9am–

12pm 

12pm

–3pm 

3pm–

6pm 

6pm–

9pm 

9pm–

12am 

Population density (½-mile)b + + + + + + + + + + + 

Employment density (¼-mile)b + + + +  + + + + + + 

Household size (¼-mile)b + +   + + + + + + + 

Household income (½-mile) − − − − − − − − − − − 

Vehicle ownership (½-mile) − −  − − − − − − − − 

% residential (¼-mile) + + +   + + + + +  

% commercial (¼-mile) + + + + + + + + + + + 

Intersection density (½-mile) + + +  + + + + + + + 

% 4-way intersections (½-mile) + + + +  + + + + + + 

# schools (¼-mile) + +    + + + + +  

# places of worship (½-mile) + + + + + + + + + + + 

# transit stops (¼-mile) + + + + + + + + + + + 

Park acreage (½-mile)b + + + + + + + + + + + 

Road type (major road dummy) + + + + + + + + + + + 

Notes: + = significant positive association, − = significant negative association, blank = no significant association.  

 

4.5  Model Validation Results 

After fitting the models with the full data, we assessed the predictive power of the nine 

models using 10-fold cross-validation. Intersections (n=1,494) were randomly split into ten 

equal-sized groups. The validation data set (10% of the data) was used to validate the model, 

which was fitted using the other 90% of the data through a spatial error model. As a result of the 

10-fold cross-validation, we obtained average RMSE, MAE, and MAPE for each model. From 

the cross-validation results, the average RMSEs ranged from 0.933 (AAD model) to 2.176 (6-

9am model); the average MAEs were between 0.701 (AAD model) and 1.976 (3–6pm model); 

and the average MAPEs ranged from 22.0% (Mon–Fri model) to 534.0% (12–3am model). 

These error values are comparable to those from the full model (RMSEs: 0.901–1.037; MAEs: 

0.679–0.793; MAPEs: 21.8–534.0%), indicating that our predictive models are stable for new 

input data. A further exploration of errors show that pedestrian traffic volumes were 

underestimated in the areas with highest pedestrian volume such as downtowns and near 

university campuses, findings which call for additional explanatory variables or non-linear 

functions. 
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4.6  Model Application and Visualizations 

The ultimate objective of developing direct-demand models of pedestrian volumes is to 

utilize their ability to predict pedestrian volumes in locations where data on pedestrians do not 

exist. For this project, the objective was to predict pedestrian volumes for unsignalized 

intersections, to supplement the traffic signal-based estimates of pedestrian volumes at signalized 

intersections. Therefore, we applied the models presented earlier in this chapter to around 62,000 

unsignalized intersections with 3 or 4 legs (62,336 to be exact) in the six major counties of Utah. 

These intersection locations were the same as used earlier, provided by the Metropolitan 

Research Center at the University of Utah.  

The first step was to assemble all of the necessary data about those unsignalized 

intersections needed to apply the direct-demand pedestrian volume models. This information 

included the same built environment data as was assembled for signalized intersections, as 

described in Section 3.3: characteristics of land uses (residential and commercial), the built 

environment (population and employment density, schools, parks, places of worship), the 

transportation system (intersection density, transit stop density, percentage of four-way 

intersections, road type), and neighborhood demographics (household size, household income, 

and vehicle ownership). These measures were assembled from the same data sources (UDOT, 

Utah AGRC, US Census, etc.) and using the same methods (quarter-mile or half-mile network 

buffers).  

The next step was to apply the direct demand pedestrian volume models to the data 

assembled for the unsignalized intersections. We took the 12 models—three for AADP (all, 

weekday, weekend), and nine for AAHP (all, plus three-hour intervals throughout the day)—and 

applied each of them to all of the 62,336 unsignalized intersections. Thus, for each unsignalized 

intersection, we obtained an annual average prediction of daily and hourly pedestrian volumes 

for different days of the week and times of day.  

The final step was to assemble our predicted pedestrian volumes and visualize them on a 

map. To do this, we chose to use ArcGIS Online and create an online web map. The “Predicted 

Pedestrian volumes at Intersections (62k) in Utah” is available for public viewing here: 

https://arcg.is/0O8bOG. A direct link to the map itself is here: https://arcg.is/0GO0Cv. 

https://arcg.is/0O8bOG
https://arcg.is/0GO0Cv
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Screenshots of the map showing overall (any day) predicted AADP volumes for different urban 

areas in Utah are shown in Figure 4-1. Screenshots of the map showing overall, weekday, and 

weekend predicted AADP volumes for one area in Utah are shown in Figure 4-2.  

 

 

(a) Salt Lake County 
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(b) Utah County 

 

(c) Weber County 

 

 (d) Cache County 
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 (e) Washington County 

Figure 4-1: Predicted Annual Average Daily Pedestrian (AADP) Volumes in Various Utah 

Urban Areas 
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 (a) Any Day 

 

 (b) Weekdays (Mon – Fri) 



 

38 

 

 (c) Weekends (Sat – Sun) 

Figure 4-2: Predicted Annual Average Daily Pedestrian (AADP) Volumes for Various 

Weekdays 

 

4.7  Summary 

Results from daily and hourly direct demand pedestrian volume models confirmed 

theoretically consistent relationships between built environment measures and pedestrian 

activity. In general, more pedestrian activity was found in locations with greater density, more 

transit access, more connected street networks, and closer to major destinations. Results also 

highlighted important temporal variations in built environment relationships with walking. 

Schools were significant and influential when in session: on weekdays and during daytime hours. 

Employment density was less influential, while population density was more influential, on 

weekends and at night. 
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5.0  CONCLUSIONS 

5.1  Summary 

To meet our study objective of examining relationships between the built environment 

and pedestrian activity, we developed direct-demand built environment models of daily and 

hourly pedestrian crossing volumes at signalized intersections using a novel data source: 

volumes estimated using pedestrian push-button events from high-resolution traffic signal 

controller logs. Based on our review of past research, we used log-linear regression and 

controlled spatial autocorrelation, and we examined traditional built environment measures like 

activity density, land use, transit access, street network design, and neighborhood 

sociodemographics. In contrast to previous work, we employed a continuously collected measure 

of pedestrian activity estimated from signal data, measured over the course of one full year, and 

averaged per day and per hour. Notably, we also identified day-of-week and time-of-day 

variations in built environment relationships with walking volumes, which we believe to be a 

relatively unique contribution to the literature (see Lu et al., 2018 for one other example). 

Another contribution of our work is that we used a larger sample size of sites (1,494 signalized 

intersections from different areas in Utah) than almost any other past effort, giving our analysis 

more power and potentially making our results more generalizable.  

5.2  Findings 

Indeed, all of our findings are consistent with theory and expectations (from past 

research) regarding links between walking and the built environment (see Table 2), which 

supports the validity of our pedestrian measures. Intersections with greater population and 

employment densities and higher percentages of nearby residential and commercial land uses 

saw more pedestrian activity (Ameli et al., 2015; Behnam and Patel, 1977; Ewing et al., 2016; 

Ewing and Clemente, 2013; Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 

2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha 

and Repaka, 2013, 2008; Schneider et al., 2012; Sung et al., 2013). Transit stop density was 

strongly and positively linked to walking (Miranda-Moreno et al., 2011; Miranda-Moreno and 
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Fernandes, 2011; Park et al., 2019; Sung et al., 2013). Regarding sociodemographic 

characteristics, as has been found previously, pedestrian activity was greater in neighborhoods 

with larger household sizes (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; 

Park et al., 2019). Overall, these results continue to support research-informed built environment 

interventions and land-use policies aimed at creating more walkable communities.  

Our analysis was also able to uncover theoretically consistent relationships between 

walking and other built environmental attributes for which past research has more commonly 

found null or theoretically inconsistent findings. Signals in areas with greater street network 

connectivity had more pedestrian crossing events, which has been found in only a few prior 

studies for intersection density (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) and 

the percentage of four-way intersections (Miranda-Moreno et al., 2011; Miranda-Moreno and 

Fernandes, 2011; Park et al., 2019). Specific nearby destinations like parks also attracted more 

pedestrian crossings, which has only been found in studies by Kang (2017, 2015). Pedestrian 

volumes were greater in neighborhoods with lower median household incomes, which has been 

found in some studies (Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and 

Repaka, 2013) but not in other studies (Hankey et al., 2012; Pulugurtha and Repaka, 2008; 

Rodríguez et al., 2009). One of our findings is perhaps contrary to expectation: the positive 

association of pedestrian activity with major roads. It could be that the design and traffic 

volumes on these streets encourage pedestrians to cross at the signal rather than at an 

unsignalized intersection (Schneider et al., 2012), or that pedestrian attractors (businesses, transit 

stops) are commonly located along these streets (Griswold et al., 2019).  

The use of a continuously recorded pedestrian data source also allowed us to examine 

time-of-day and day-of-week variations in these built environment relationships that are not 

feasible to consider when using only short-duration pedestrian counts. Many factors had similar 

relationships with pedestrian activity throughout the week and across the day, but a few did not. 

Population density seemed to be most relevant (with a larger coefficient) on weekends and 

during evening hours, when we expect more people to be at home. For example, a 10% increase 

in population density would be expected to yield a 3.8% increase (1.100.388) in evening hourly 

pedestrian volumes (6–9pm), but only a 2.4% increase (1.100.252) during the morning (6–9am). 

Lu, et al. (2018) also found population density to have a larger coefficient during evening hours 
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than during the day. Conversely, employment density played a bigger role on weekdays and 

during daytime hours: a 10% increase in employment density would be expected to generate 

1.3% more (1.100.136) daily pedestrians during weekdays, but only 0.7% more (1.100.070) during 

weekends. As expected, our models showed that intersections near schools had greater pedestrian 

activity, but only or especially when primary/secondary schools are in session: on weekdays and 

during morning and afternoon commuting hours. This finding supports traffic calming and safety 

efforts around primary/secondary schools, including school-zone speed limits and crossing 

guards. 

5.3  Limitations and Challenges 

Despite these contributions, a limitation of this work is the use of pedestrian volumes 

estimated from traffic signal data as opposed to observed pedestrian counts or crossing volumes. 

Previous research on pedestrian behavior and the utilization of pedestrian push-buttons at signals 

has found that rates vary across locations such as by signal type (Kutela and Tang, 2020), in 

different situations like the presence/absence of approaching motor vehicles (Foster et al., 2014), 

and by age, gender, and other pedestrian characteristics (Kutela and Tang, 2020). These factors 

and their aggregated versions (i.e., motor vehicle traffic volumes and neighborhood socio-

demographics) have not been considered in the models upon which our estimated pedestrian 

volume data are based (Singleton et al., 2020; Singleton and Runa, 2021). However (as 

previously mentioned), research from Utah and other states (Blanc et al., 2015; Kothuri et al., 

2017; Li and Wu, 2021; Singleton et al., 2020; Singleton and Runa, 2021) has found pedestrian 

push-button event data to be highly correlated with observed pedestrian crossing volumes. So, 

any improvement in the accuracy of our models’ dependent variables through the addition of 

factors like these would likely be modest.  

Another limitation is that the locations where pedestrian signal data are available may not 

be entirely representative. These data are not available at signals without pedestrian detection: in 

our study, these included some high-pedestrian downtown intersections that operate without 

push-buttons, as well as a few intersections in heavily-industrial areas and isolated freeway 

interchanges. Also, signalized intersections tend to be more highly concentrated along larger, 

arterial roadways and in urban areas, so our findings may not be completely generalizable to 
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non-signalized intersections, and our data may capture more utilitarian walk trips. That said, 

more than 90% of Utah’s population lives in an urban area, and we did find more walking near 

parks. It could be advantageous to combine signal-based estimates of pedestrian volumes with 

data from permanent pedestrian counters on trails and in other more recreational contexts in 

order to improve the generalizability of direct-demand models. Overall, these methods may be 

most appropriate for moderately urban to suburban locations. Nevertheless, this trait is fortunate, 

since (in the US) these tend to be the locations most lacking in pedestrian data and where 

tradeoffs have to be made between priorities (e.g., in signal timing) for pedestrians vs. motor 

vehicle drivers. 

Despite these limitations and opportunities for future work, we think our theoretically 

consistent findings about built environment relationships with walking—and our ability to detect 

day-of-week and time-of-day variations in those relationships—demonstrate the utility of traffic 

signal data sources for direct-demand pedestrian volume modeling. There are hundreds of 

thousands of traffic signals across the US (NTOC, 2012), many with pedestrian push-buttons 

(more than 85% in Utah). Also, many states and regions (including Utah, Georgia, and the 

Phoenix, Las Vegas, and Orlando areas) have or are actively developing ATSPM systems to 

archive pedestrian detections and other signal events. These trends make our methods 

increasingly applicable for the development of locally calibrated direct-demand pedestrian 

volume models. Additionally, the ultimate objective of direct-demand models is to predict 

pedestrian volumes in areas and for locations without current pedestrian data. In fact, the specific 

models presented in this paper can be applied, using built environment data, to estimate average 

daily/hourly pedestrian volumes at thousands of unsignalized intersections throughout Utah. 

Such estimates would be valuable for various transportation planning, design, and operational 

tasks, including as a measure of exposure for pedestrian safety studies. Overall, this work 

provides planners with more tools to model, analyze, and plan for pedestrians with greater 

temporal resolution. 
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6.0  RECOMMENDATIONS AND IMPLEMENTATION 

6.1  Recommendations 

An accurate prediction of pedestrian traffic volume is an important goal for urban and 

transportation planners. The estimated pedestrian volumes at all intersections in Utah, a major 

product of this research project, can help UDOT and other governmental agencies at the state, 

regional, and local levels in multiple ways.  

First, we recommend using the estimated pedestrian volumes as a measure of pedestrian 

exposure in pedestrian safety analyses (e.g., pedestrian crash rates, pedestrian crash frequency 

models, pedestrian fatalities involving impaired road users) (Lee & Abdel-Aty, 2005). As 

previously mentioned, pedestrian volume data useful for pedestrian safety analysis is costly and 

time-intensive to measure directly, so model-estimated volumes offer a potentially useful source 

of data. Crash prediction models and predictive methods—including safety performance 

functions and crash modification factors—would benefit greatly from being able to include (and 

control for) more robust data on pedestrian exposure, usually the biggest data barrier involved in 

pedestrian safety analysis (Singleton, Mekker, and Islam, 2021).  

Second, these pedestrian volumes can be used in various other analysis procedures. 

Multimodal level-of-service calculations—including for pedestrian level of service for signalized 

intersections, but also for street segments and stop-controlled intersections—require information 

on pedestrian flow rates (TRB, 2016). Our models of pedestrian traffic volumes can provide 

necessary information for these types of calculations. Also, transportation planners can relate the 

pedestrian volume at intersections to walking-based physical activity levels (distances, durations) 

for health impact assessments. Policies that increase pedestrian traffic volume, such as reducing 

traffic injuries and pollution and promoting active transportation, are likely to yield more 

individual health benefits through increases in physical activity for pedestrians, cyclists, and 

transit riders (de Nazelle et al., 2011).  

Third, the spatial and temporal distributions of pedestrian volume highlight certain areas 

to prioritize planning and development interventions. In addition to guiding development 
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patterns (see the next paragraph), those data also show where to invest and improve pedestrian 

infrastructures, such as infill sidewalks or pedestrian crossing treatments. For example, expected 

pedestrian volume (obtained from our model estimates) could be one criterion when evaluating 

and programming pedestrian-focused infrastructure projects so that investment is directed 

towards locations with the biggest impact. Places with higher anticipated pedestrian volumes 

could be required to install higher-quality facilities, like wider sidewalks and pedestrian-scale 

lighting. Information about temporal variations in pedestrian activity could also be used when 

permitting roadway or commercial/residential construction, so that sidewalks are not closed in 

places where or during times when significant pedestrian activity is expected. Even local 

businesses could use our models’ estimates of pedestrian volumes to evaluate different potential 

locations’ exposure to foot traffic, helping to evaluate the commercial viability of new retail 

businesses or advertising.  

Fourth, our statistical models of daily and hourly pedestrian traffic volume support built 

environment interventions and land-use policies aimed at creating more walkable communities. 

There is a growing interest in creating active living and walk-friendly communities in order to 

improve health, reduce automobile dependence, and strengthen local economies. The first 

implication for planning practice is that context is essential in street vitality. To increase the 

density of population and employment and promote mixed-use developments, municipalities can 

amend zoning or adopt a form-based code. State and regional agencies can support those efforts 

both financially and technically. The Wasatch Regional Front Council (WFRC), the major MPO 

in Utah, began working in 2013 to establish a program called “Transportation and Land Use 

Connection” (TLC) to support communities in coordinated smart-growth planning (WFRC, n.d.). 

The TLC program is distinctive and noteworthy in terms of: 1) the extensive partnership with 

state and local agencies, including UDOT, UTA, and Salt Lake County, and their active 

participation both financially and technically in projects; 2) dedicated staff to administer 

projects, reducing the administrative burden on the cities and allowing the program partners to 

see regularly if TLC goals are met; and 3) a great demand for the program from the cities seeing 

rapid population growth and urban expansion. Our pedestrian volume models provide UDOT 

and other agencies with specific built environment measures to promote pedestrian activity on 

streets, including public transit stop density, street network connection (e.g., intersection density, 

% 4-way intersections), and the availability of parks and schools. 
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Finally, there are opportunities to improve upon our analysis through additional research. 

Future studies could examine seasonal variations in daily pedestrian activity at signalized 

interactions, which would consider effects due to weather variables such as temperature, 

precipitation, and wind (Runa and Singleton, 2021). Also, because pedestrian traffic volumes 

may not be linearly related to all built environment variables, future studies may use non-linear 

regression such as generalized additive models (Park et al., 2020) or machine learning algorithms 

such as gradient-boosting decision trees or random forests (Cheng et al., 2019; Ding et al., 2018). 

We expect that by using long-term automated counts derived from traffic signal event data, our 

pedestrian measures can potentially do a better job of reducing the random variability arising 

from short-term (usually < 12 hours) counts, thus yielding more robust relationships with 

measures of the built environment. However, this topic—quantifying error associated with 

estimates of pedestrian volumes using different durations of count data (Johnstone et al., 2018; 

Nordback et al., 2019)—is another subject for further study. Research should also continue to 

explore the feasibility and accuracy of other pedestrian detection methods—video image 

processing (Rahman et al., 2019), LiDAR (Zhao et al., 2019), and others—for pedestrian volume 

monitoring applications. 

Diversifying data sources and using machine learning techniques can contribute to a more 

accurate prediction of pedestrian traffic volume across multiple parts of Utah. As we pointed out 

in the previous “5.3 Limitations and Challenges” section, some types of intersections do not have 

pedestrian signal data, which could hurt the generalizability of our models and resulting maps. 

Those include high-traffic downtown areas without push-buttons, industrial areas and isolated 

freeway interchanges, and rural areas with unsignalized intersections. Also, our data may capture 

more utilitarian walk trips. Through big data processing and machine learning techniques, it 

could be advantageous to combine signal-based estimates of pedestrian volumes with data from 

permanent pedestrian counters on trails, app-based data (e.g., Strava), and cellphone-based traffic 

data (e.g., INRIX, StreetLight, AirSage).  
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	EXECUTIVE SUMMARY 
	Quantifying pedestrian volumes and levels of walking activity is critical for many transportation tasks, including pedestrian planning and safety analysis. Because of the limitations of traditional pedestrian data collection methods (typically short-duration manual counts at a limited number of locations), direct-demand models of pedestrian volume models—identifying relationships with built environment characteristics—are becoming more common. Still, direct- demand models require large quantities of (pedest
	We overcome these limitations using a novel source of pedestrian data: estimated pedestrian crossing volumes based on push-button event data recorded in traffic signal controller logs. Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal Performance Measures (ATSPM) system. A previous UDOT research project developed methods to estimate pedestrian crossing volume
	Specifically, we develop direct-demand (log-linear regression) models that represent relationships between built environment variables (calculated at ¼- and ½-mile network buffers) and annual average daily and hourly estimated pedestrian volumes. We test many built environment variables with empirical and/or theoretical linkages with pedestrian activity. We also control spatial autocorrelation through the use of spatial error models, and validate our model results using k-fold cross-validation. To our knowl
	All results confirm theorized relationships: There is more pedestrian activity at intersections with greater population and employment densities, a larger proportion of 
	commercial and residential land uses, more connected street networks (with greater intersection density and percentage of four-way intersections) with greater transit access, more nearby services and amenities (e.g., parks and schools), and in lower-income neighborhoods with larger households and fewer vehicles. While several of these findings confirm evidence from previous research, others—most notably, those related to street network connectivity, specific destinations, and household income—are relatively
	Notably, we also find relevant day-of-week and time-of-day differences in relationships between pedestrian volumes and measures of the built environment. For example, schools attract pedestrian activity, but only on weekdays during daytime hours, and the coefficient for places of worship is higher in the weekend model. Employment density was more closely linked to pedestrian volumes during weekdays and daytime hours, while population density had a stronger association during evenings and weekends. K-fold cr
	Results demonstrate the value of these novel pedestrian signal data for planning purposes and offer support for built environment interventions and land use policies to encourage walkable communities. We also offer recommendations for using these estimates of pedestrian volumes for various other important transportation planning and engineering tasks, including pedestrian safety analysis, multimodal level-of-service calculation, health impact assessment, pedestrian design and infrastructure prioritization, 
	 
	1.0  INTRODUCTION 
	1.1  Problem Statement 
	Quantifying pedestrian volumes and levels of walking activity is critical for many transportation planning, engineering, and management tasks. Traffic safety analyses require estimates of pedestrian exposure to risk, and durations/distances of physically active transportation are inputs to transportation health impact assessments. Information on walking is also useful for analyzing pedestrian level/quality of service, designing pedestrian infrastructure, and prioritizing pedestrian investments. Furthermore,
	Pedestrian volume data can be collected. Nevertheless, traditional data collection methods for monitoring pedestrian traffic have limitations: They involve short durations, few locations, or samples of the population. Manual intersection or street segment counts are time consuming and often infeasible to conduct over long periods of time. Instruments such as infrared counters can record continuous data on trail users, but they are costly to deploy across multiple sites (Ryus et al., 2014). The passive colle
	Alternatively, pedestrian volume data can be modeled. Conventional methods of modeling roadway volumes are inappropriate for pedestrians, due to data and scale challenges with including pedestrians in regional travel-demand forecasting models (Singleton et al., 2018). Instead, planners interested in facility-specific information have turned to using direct-demand models (Kuzmyak et al., 2014; Munira and Sener, 2017). Direct-demand models predict pedestrian volumes using observed counts and measures of the s
	features affect pedestrian volumes and inform transportation and land-use planning and urban design strategies to promote walkable communities. Still, direct-demand models require large quantities of (pedestrian) estimation data in order to be generalizable beyond the few locations where they were developed, and they are often insensitive to temporal variations in walking activity. 
	One potential data source that is relatively ubiquitous in both time and space (available 24/7 at many intersections) is the high-resolution data logs from traffic signal controllers. Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal Performance Measures (ATSPM) system. The use of pedestrian signal data is a potentially rich source of information about levels
	Phase I of this research—Singleton, Runa & Humagain (2020), “Utilizing Archived Traffic Signal Performance Measures for Pedestrian Planning and Analysis” (UDOT Research report no. 
	Phase I of this research—Singleton, Runa & Humagain (2020), “Utilizing Archived Traffic Signal Performance Measures for Pedestrian Planning and Analysis” (UDOT Research report no. 
	UT-20.17
	UT-20.17

	)—developed methods to translate pedestrian traffic signal data into valuable information on pedestrian volumes at signalized intersections. Singleton et al. (2020) used one year of data from 1,522 Utah traffic signals and time series clustering to describe patterns of pedestrian signal activity. Based on these typologies, they randomly selected 90 Utah signals, used UDOT traffic cameras to record over 10,000 hours of video, and manually counted almost 175,000 pedestrians crossing at the intersections. Usin

	Phase II of this research—the present project—extends the capability of pedestrian volume estimation to unsignalized intersections. First, direct-demand models of pedestrian volumes are developed that represent theoretically consistent relationships between pedestrian crossing volumes and measures of the built environment, land use, and neighborhood sociodemographics at around 1,500 signalized intersections in Utah. Second, these models are 
	applied to additional built environment data to predict pedestrian volumes at over 62,000 unsignalized intersections in Utah. We expect that these volume estimates offer improved opportunities for pedestrian planning and operations as well as for health and safety analyses.  
	1.2  Objectives 
	The objective of this research is to examine relationships between the built environment and pedestrian activity through the development of direct-demand models of pedestrian volumes, taking advantage of a novel and relatively ubiquitous (in both time and space) source of pedestrian data. Specifically, we utilize estimates of pedestrian crossing volumes—taken from pedestrian push-button activity data from high-resolution traffic signal controller logs—and apply log-linear regression models for different tim
	1.3  Scope 
	This project accomplished this research objective through the following major tasks:  
	• Reviewing literature on pedestrian volume modeling studies, built environment predictors of pedestrian volumes, traffic signal-based measures of pedestrian activity, and direct-demand pedestrian volume modeling.  
	• Reviewing literature on pedestrian volume modeling studies, built environment predictors of pedestrian volumes, traffic signal-based measures of pedestrian activity, and direct-demand pedestrian volume modeling.  
	• Reviewing literature on pedestrian volume modeling studies, built environment predictors of pedestrian volumes, traffic signal-based measures of pedestrian activity, and direct-demand pedestrian volume modeling.  

	• Assembling pedestrian data and estimating pedestrian volumes at signalized intersections, using results from Phase I. This task involved processing of one year of ATSPM traffic signal data from 1,494 signalized intersections and applying the factoring methods developed during the Phase I project.  
	• Assembling pedestrian data and estimating pedestrian volumes at signalized intersections, using results from Phase I. This task involved processing of one year of ATSPM traffic signal data from 1,494 signalized intersections and applying the factoring methods developed during the Phase I project.  


	• Assembling and preparing geospatial information about signalized and unsignalized intersections in Utah. This information included local land use and built environment characteristics (e.g., residential density, businesses, schools, parks) as well as measures of the adjacent multimodal transportation system (e.g., transit service) and neighborhood sociodemographic characteristics (e.g., household income).  
	• Assembling and preparing geospatial information about signalized and unsignalized intersections in Utah. This information included local land use and built environment characteristics (e.g., residential density, businesses, schools, parks) as well as measures of the adjacent multimodal transportation system (e.g., transit service) and neighborhood sociodemographic characteristics (e.g., household income).  
	• Assembling and preparing geospatial information about signalized and unsignalized intersections in Utah. This information included local land use and built environment characteristics (e.g., residential density, businesses, schools, parks) as well as measures of the adjacent multimodal transportation system (e.g., transit service) and neighborhood sociodemographic characteristics (e.g., household income).  

	• Estimating models predicting pedestrian volumes at signalized intersections as a function of land use, built environment, and transportation system characteristics. These direct-demand models were log-linear, controlled spatial autocorrelation, and were segmented by day of the week and time of day.  
	• Estimating models predicting pedestrian volumes at signalized intersections as a function of land use, built environment, and transportation system characteristics. These direct-demand models were log-linear, controlled spatial autocorrelation, and were segmented by day of the week and time of day.  

	• Applying estimated models to unsignalized intersections and predicting pedestrian volumes at signalized and unsignalized intersections. This resulted in pedestrian volume estimates for over 62,000 unsignalized intersections in Utah. Model validation utilized a 10-fold cross-validation approach.  
	• Applying estimated models to unsignalized intersections and predicting pedestrian volumes at signalized and unsignalized intersections. This resulted in pedestrian volume estimates for over 62,000 unsignalized intersections in Utah. Model validation utilized a 10-fold cross-validation approach.  

	• Developing a prototype online tool and graphical interface to visualize estimated pedestrian volumes at signalized and unsignalized intersections. This visualization was an ArcGIS online map showing average estimated pedestrian volumes overall and for different days of the week and times of day.  
	• Developing a prototype online tool and graphical interface to visualize estimated pedestrian volumes at signalized and unsignalized intersections. This visualization was an ArcGIS online map showing average estimated pedestrian volumes overall and for different days of the week and times of day.  

	• Providing recommendations for implementation and future work.  
	• Providing recommendations for implementation and future work.  


	1.4  Outline of Report  
	This report is organized into the following chapters:  
	• Chapter 
	• Chapter 
	• Chapter 
	• Chapter 
	1.0
	1.0

	 provides an introduction to the research, including the problem statement, objectives, scope, and outline of the report.  


	• Chapter 
	• Chapter 
	• Chapter 
	2.0
	2.0

	 describes the research methods, including a literature review of pedestrian volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal-based measures of pedestrian activity, as well as a description of direct-demand volume modeling.  



	• Chapter 
	• Chapter 
	• Chapter 
	• Chapter 
	3.0
	3.0

	 contains details about the data collection, including estimated pedestrian volumes from traffic signal data and built environment data.  


	• Chapter 
	• Chapter 
	• Chapter 
	4.0
	4.0

	 reports on data evaluation aspects, including results of the direct-demand models of daily and hourly pedestrian volumes, model validation results, and model application and visualization.  


	• Chapter 
	• Chapter 
	• Chapter 
	5.0
	5.0

	 offers conclusions, including key findings as well as study limitations and challenges.  


	• Chapter 
	• Chapter 
	• Chapter 
	6.0
	6.0

	 provides recommendations for implementation of the findings.  



	 
	2.0  RESEARCH METHODS 
	2.1  Overview 
	This chapter describes the research methods, including a literature review of pedestrian volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal-based measures of pedestrian activity, as well as a description of direct-demand volume modeling. 
	2.2  Literature Review 
	Two general threads of research have investigated built environment correlates of pedestrian counts or volumes. One research path is motivated by developing models to predict pedestrian demand for use in various transportation engineering, planning, and safety analysis tasks. For example, Schneider et al. (2009) describe several applications of such models: to “quantify pedestrian exposure in safety analysis,” prioritize pedestrian projects, design pedestrian infrastructure, predict pedestrian volumes in th
	Two tables in this section summarize the methods, outcomes, and predictors used in studies modeling pedestrian volumes as a function of built environment measures. We focus on studies with models of pedestrian counts or volumes, not on literature using individual- or household-based measures of walking behavior. We also exclude studies that group walk and bicycle traffic together into one non-motorized mode. 
	2.2.1  Pedestrian Volume Modeling Studies 
	As shown in 
	As shown in 
	Table 2-1
	Table 2-1

	, most pedestrian volume direct-demand models utilize manually collected, short-duration counts of the number of people walking along street segments or crossing at intersections. Sometimes these counts are as short as 30 or even 10 minutes (or multiple 5-minute counts), but rarely do they exceed 12 hours. These short durations are not surprising, given the cost and effort of conducting manual pedestrian counts at multiple locations (Ryus et al., 2014). One exception is the one week of automated pedestrian 

	Table 2-1: Summary of Pedestrian Volume Modeling Studies 
	 
	 
	 
	 
	 

	Information 
	Information 

	 
	 

	 
	 

	Pedestrian 
	Pedestrian 

	 
	 

	 
	 

	Model 
	Model 

	 
	 



	Study 
	Study 
	Study 
	Study 

	Geography 
	Geography 

	Locations 
	Locations 

	Time 
	Time 

	Outcome 
	Outcome 

	Method 
	Method 

	Details 
	Details 

	Type 
	Type 

	Fit 
	Fit 


	Pushkarev and Zupan (1971) 
	Pushkarev and Zupan (1971) 
	Pushkarev and Zupan (1971) 

	Manhattan, New York City, New York, US 
	Manhattan, New York City, New York, US 

	≤605 block faces 
	≤605 block faces 

	1969 Apr–Jun 
	1969 Apr–Jun 

	Volume, instant 
	Volume, instant 

	AP 
	AP 

	Twice, WD, MD & PM 
	Twice, WD, MD & PM 

	L 
	L 

	0.23–0.61 
	0.23–0.61 


	Behnam and Patel (1977) 
	Behnam and Patel (1977) 
	Behnam and Patel (1977) 

	Downtown Milwaukee, Wisconsin, US 
	Downtown Milwaukee, Wisconsin, US 

	? street segments 
	? street segments 

	1971–1973 Sum 
	1971–1973 Sum 

	Volume, 1 hr 
	Volume, 1 hr 

	MC 
	MC 

	Multiple times 6 min, WD, DT 
	Multiple times 6 min, WD, DT 

	LL 
	LL 

	0.58 
	0.58 


	Hillier et al. (1993) 
	Hillier et al. (1993) 
	Hillier et al. (1993) 

	Central London, England, UK 
	Central London, England, UK 

	≤239 street segments 
	≤239 street segments 

	?? 
	?? 

	Volume 
	Volume 

	MC 
	MC 

	20-30 times, AM & MD & PM 
	20-30 times, AM & MD & PM 

	LL 
	LL 

	0.29–0.57 
	0.29–0.57 


	Penn et al. (1998) 
	Penn et al. (1998) 
	Penn et al. (1998) 

	Central London, England, UK 
	Central London, England, UK 

	7 street segments 
	7 street segments 

	?? 
	?? 

	Volume, 50 min 
	Volume, 50 min 

	MC 
	MC 

	Ten times 5 min, AM & MD & PM 
	Ten times 5 min, AM & MD & PM 

	CR 
	CR 

	0.98 
	0.98 




	Qin and Ivan (2001) 
	Qin and Ivan (2001) 
	Qin and Ivan (2001) 
	Qin and Ivan (2001) 
	Qin and Ivan (2001) 

	Rural Connecticut, US 
	Rural Connecticut, US 

	32 crossings 
	32 crossings 

	1999 May, Jun, Oct, Nov 
	1999 May, Jun, Oct, Nov 

	Crossing volume 
	Crossing volume 

	MC 
	MC 

	Twice 9.5 hr, WD & WE, DT 
	Twice 9.5 hr, WD & WE, DT 

	LL 
	LL 

	0.81–0.91 
	0.81–0.91 


	Desyllas et al. (2003) 
	Desyllas et al. (2003) 
	Desyllas et al. (2003) 

	Central London, England, UK 
	Central London, England, UK 

	231 street segments 
	231 street segments 

	1999 Aug, 2000 Mar, 2001 Jul 
	1999 Aug, 2000 Mar, 2001 Jul 

	Volume, 1 hr 
	Volume, 1 hr 

	MC 
	MC 

	Multiple 5 min, DT 
	Multiple 5 min, DT 

	LL 
	LL 

	0.82 
	0.82 


	Raford and Ragland (2004) 
	Raford and Ragland (2004) 
	Raford and Ragland (2004) 

	Oakland, California, US 
	Oakland, California, US 

	42 intersections 
	42 intersections 

	?? 
	?? 

	Volume, 1 year (extrapolated) 
	Volume, 1 year (extrapolated) 

	MC 
	MC 

	Multiple 2 hr, WD & WE, AM & PM 
	Multiple 2 hr, WD & WE, AM & PM 

	?? 
	?? 

	0.77 
	0.77 


	Liu and Griswold (2009) 
	Liu and Griswold (2009) 
	Liu and Griswold (2009) 

	San Francisco, California, US 
	San Francisco, California, US 

	63 intersections 
	63 intersections 

	2002 May, Jun, Aug, Sep 
	2002 May, Jun, Aug, Sep 

	Crossing volume 
	Crossing volume 

	MC 
	MC 

	Once 4 hr, WD, PM 
	Once 4 hr, WD, PM 

	L, SA 
	L, SA 

	0.75 
	0.75 


	Miranda-Moreno et al. (2011)   
	Miranda-Moreno et al. (2011)   
	Miranda-Moreno et al. (2011)   

	Montréal, Quebec, CA 
	Montréal, Quebec, CA 

	519 signalized intersections 
	519 signalized intersections 

	2003 Spr–Sum 
	2003 Spr–Sum 

	Volume 
	Volume 

	MC 
	MC 

	Three times 1 hr, WD, AM & MD & PM 
	Three times 1 hr, WD, AM & MD & PM 

	LL 
	LL 

	0.55 
	0.55 


	Raford and Ragland (2006) 
	Raford and Ragland (2006) 
	Raford and Ragland (2006) 

	Boston, Massachusetts, US 
	Boston, Massachusetts, US 

	82 locations 
	82 locations 

	2004 Aug 
	2004 Aug 

	Volume 
	Volume 

	MC 
	MC 

	24 times 5 min, WD & WE, DT 
	24 times 5 min, WD & WE, DT 

	?? 
	?? 

	0.79–0.86 
	0.79–0.86 


	Pulugurtha and Repaka (2013,  2008) 
	Pulugurtha and Repaka (2013,  2008) 
	Pulugurtha and Repaka (2013,  2008) 

	Charlotte, North Carolina, US 
	Charlotte, North Carolina, US 

	176 signalized intersections 
	176 signalized intersections 

	2005 
	2005 

	Volume, 12 hr 
	Volume, 12 hr 

	MC 
	MC 

	Once 12 hr, DT 
	Once 12 hr, DT 

	L 
	L 

	0.15–0.86 
	0.15–0.86 


	Rodríguez et al. (2009) 
	Rodríguez et al. (2009) 
	Rodríguez et al. (2009) 

	Bogotá, Distrito Capital, CO 
	Bogotá, Distrito Capital, CO 

	338 street segments 
	338 street segments 

	2005 Jun–Aug 
	2005 Jun–Aug 

	Volume, 10 min 
	Volume, 10 min 

	MC 
	MC 

	Once 10 min, WD, AM 
	Once 10 min, WD, AM 

	NB 
	NB 

	0.03 
	0.03 


	Ewing et al. (2016),  Ewing and Clemente (2013) 
	Ewing et al. (2016),  Ewing and Clemente (2013) 
	Ewing et al. (2016),  Ewing and Clemente (2013) 

	New York City, New York, US 
	New York City, New York, US 

	588 block faces 
	588 block faces 

	2006 Sum 
	2006 Sum 

	Volume 
	Volume 

	MC 
	MC 

	Four times, WD, DT 
	Four times, WD, DT 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Arnold et al. (2010) 
	Arnold et al. (2010) 
	Arnold et al. (2010) 

	San Diego County, California, US 
	San Diego County, California, US 

	80 locations 
	80 locations 

	2007 Jul–Aug, 2008 
	2007 Jul–Aug, 2008 

	Volume, 2 hr (adjusted) 
	Volume, 2 hr (adjusted) 

	MC 
	MC 

	Twice 2 hr, WD & WE, AM or MD or PM 
	Twice 2 hr, WD & WE, AM or MD or PM 

	LL 
	LL 

	0.52 
	0.52 


	Hajrasouliha and Yin (2015) 
	Hajrasouliha and Yin (2015) 
	Hajrasouliha and Yin (2015) 

	Buffalo, New York, US 
	Buffalo, New York, US 

	302 street segments 
	302 street segments 

	2007–2010 
	2007–2010 

	Volume 
	Volume 

	MC 
	MC 

	Twice, WD, DT 
	Twice, WD, DT 

	L 
	L 

	?? 
	?? 


	Hankey et al. (2012) 
	Hankey et al. (2012) 
	Hankey et al. (2012) 

	Minneapolis, Minnesota, US 
	Minneapolis, Minnesota, US 

	259 street/path segments 
	259 street/path segments 

	2007–2010 Sep 
	2007–2010 Sep 

	Volume, 12 hr (extrapolated) 
	Volume, 12 hr (extrapolated) 

	MC 
	MC 

	2 hr or 12 hr, WD, PM or DT 
	2 hr or 12 hr, WD, PM or DT 

	NB 
	NB 

	0.42 
	0.42 


	Hankey and Lindsey (2016) 
	Hankey and Lindsey (2016) 
	Hankey and Lindsey (2016) 

	Minneapolis, Minnesota, US 
	Minneapolis, Minnesota, US 

	471 street/trail segments 
	471 street/trail segments 

	2007–2014 Sep 
	2007–2014 Sep 

	Volume, 1 hr 
	Volume, 1 hr 

	MC 
	MC 

	Various 2 hr, PM 
	Various 2 hr, PM 

	LL 
	LL 

	0.50–0.53 
	0.50–0.53 


	Tabeshian and Kattan (2014) 
	Tabeshian and Kattan (2014) 
	Tabeshian and Kattan (2014) 

	Calgary, Alberta, CA 
	Calgary, Alberta, CA 

	34 intersections 
	34 intersections 

	2007–2012 
	2007–2012 

	Volume, 2 hr 
	Volume, 2 hr 

	MC 
	MC 

	Three times 2 hr, AM & MD & PM 
	Three times 2 hr, AM & MD & PM 

	L, P 
	L, P 

	0.79–0.92 
	0.79–0.92 


	Schneider et al. (2009) 
	Schneider et al. (2009) 
	Schneider et al. (2009) 

	Alameda County, California, US 
	Alameda County, California, US 

	50 intersections 
	50 intersections 

	2008 Apr–Jun 
	2008 Apr–Jun 

	Crossing volume, 1 week (extrapolated) 
	Crossing volume, 1 week (extrapolated) 

	MC 
	MC 

	Twice 2 hr, WD & WE, AM or MD or PM 
	Twice 2 hr, WD & WE, AM or MD or PM 

	L 
	L 

	0.89 
	0.89 




	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 

	Montréal, Quebec, CA 
	Montréal, Quebec, CA 

	1,018 signalized intersections 
	1,018 signalized intersections 

	2008-2009 
	2008-2009 

	Crossing volume 
	Crossing volume 

	MC 
	MC 

	Once 8 hr, WD, AM & MD & PM 
	Once 8 hr, WD, AM & MD & PM 

	LL 
	LL 

	0.58 
	0.58 


	Ozbil et al. (2011) 
	Ozbil et al. (2011) 
	Ozbil et al. (2011) 

	Atlanta, Georgia, US 
	Atlanta, Georgia, US 

	157 locations 
	157 locations 

	?? 
	?? 

	Volume 
	Volume 

	MC 
	MC 

	20 times (or ten times 20 min), DT & PM 
	20 times (or ten times 20 min), DT & PM 

	LL 
	LL 

	0.82–0.84 
	0.82–0.84 


	Kang (2018, 2017, 2015), Kim et al. (2019, 2017), Sung et al. (2013, 2015) 
	Kang (2018, 2017, 2015), Kim et al. (2019, 2017), Sung et al. (2013, 2015) 
	Kang (2018, 2017, 2015), Kim et al. (2019, 2017), Sung et al. (2013, 2015) 

	Seoul, KR 
	Seoul, KR 

	≤9,850 street segments 
	≤9,850 street segments 

	2009 Aug–Nov 
	2009 Aug–Nov 

	Volume 
	Volume 

	MC 
	MC 

	Six times 14 hr, WD & WE, DT 
	Six times 14 hr, WD & WE, DT 

	LL, SA 
	LL, SA 

	0.24–0.81 
	0.24–0.81 


	Schneider et al. (2012) 
	Schneider et al. (2012) 
	Schneider et al. (2012) 

	San Francisco, California, US 
	San Francisco, California, US 

	50 intersections 
	50 intersections 

	2009 Sep, 2010 Jul–Aug 
	2009 Sep, 2010 Jul–Aug 

	Crossing volume, 1 year (extrapolated) 
	Crossing volume, 1 year (extrapolated) 

	MC 
	MC 

	Once 2 hr, WD, AM or PM 
	Once 2 hr, WD, AM or PM 

	LL 
	LL 

	0.80 
	0.80 


	Ameli et al. (2015) 
	Ameli et al. (2015) 
	Ameli et al. (2015) 

	Downtown Salt Lake City, Utah, US 
	Downtown Salt Lake City, Utah, US 

	179 block faces 
	179 block faces 

	2012 Sep–Oct 
	2012 Sep–Oct 

	Volume 
	Volume 

	MC 
	MC 

	Twice 30 min, WD, MD & PM 
	Twice 30 min, WD, MD & PM 

	NB 
	NB 

	?? 
	?? 


	Maxwell (2016) 
	Maxwell (2016) 
	Maxwell (2016) 

	Glasgow, Scotland, UK 
	Glasgow, Scotland, UK 

	693 street segments 
	693 street segments 

	2014–2015 Sum 
	2014–2015 Sum 

	Volume 
	Volume 

	MC 
	MC 

	Four times, WD, DT 
	Four times, WD, DT 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Sanders et al. (2017) 
	Sanders et al. (2017) 
	Sanders et al. (2017) 

	Seattle, Washington, US 
	Seattle, Washington, US 

	49 intersections 
	49 intersections 

	?? 
	?? 

	Volume, 1 year (extrapolated) 
	Volume, 1 year (extrapolated) 

	MC 
	MC 

	??, PM 
	??, PM 

	P 
	P 

	0.76 
	0.76 


	Hankey et al. (2017), Lu et al. (2018) 
	Hankey et al. (2017), Lu et al. (2018) 
	Hankey et al. (2017), Lu et al. (2018) 

	Blacksburg, Virginia, US 
	Blacksburg, Virginia, US 

	72 locations 
	72 locations 

	2015 Apr–Oct 
	2015 Apr–Oct 

	Volume, 1 day & 1 hour (averaged) 
	Volume, 1 day & 1 hour (averaged) 

	AC 
	AC 

	Once 1 wk 
	Once 1 wk 

	LL 
	LL 

	0.71, 0.00–0.78 
	0.71, 0.00–0.78 


	Park et al. (2019) 
	Park et al. (2019) 
	Park et al. (2019) 

	Salt Lake County, Utah, US 
	Salt Lake County, Utah, US 

	881 block faces 
	881 block faces 

	2015 
	2015 

	Volume 
	Volume 

	MC 
	MC 

	Four times, WD, DT 
	Four times, WD, DT 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Hamidi and Moazzeni (2019) 
	Hamidi and Moazzeni (2019) 
	Hamidi and Moazzeni (2019) 

	Downtown Dallas, Texas, US 
	Downtown Dallas, Texas, US 

	402 block faces 
	402 block faces 

	2016 Spr-Sum 
	2016 Spr-Sum 

	Volume, 30 min 
	Volume, 30 min 

	MC 
	MC 

	Once 30 min, WD, PM 
	Once 30 min, WD, PM 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Le et al. (2020) 
	Le et al. (2020) 
	Le et al. (2020) 

	Dallas, Texas, US 
	Dallas, Texas, US 

	196 intersections 
	196 intersections 

	2016 
	2016 

	Volume 1 day (extrapolated) 
	Volume 1 day (extrapolated) 

	MC 
	MC 

	Once 2 hr or 8 hr 
	Once 2 hr or 8 hr 

	NB 
	NB 

	?? 
	?? 


	Griswold et al. (2019) 
	Griswold et al. (2019) 
	Griswold et al. (2019) 

	California, US 
	California, US 

	1,270 intersections 
	1,270 intersections 

	2006–2016 
	2006–2016 

	Crossing volume, 1 year (extrapolated) 
	Crossing volume, 1 year (extrapolated) 

	MC 
	MC 

	Various 1-86 hr, most two times 2 hr, AM & PM 
	Various 1-86 hr, most two times 2 hr, AM & PM 

	LL 
	LL 

	0.71 
	0.71 


	Schneider et al. (2021) 
	Schneider et al. (2021) 
	Schneider et al. (2021) 

	Milwaukee, Wisconsin, US 
	Milwaukee, Wisconsin, US 

	260 intersections 
	260 intersections 

	2013–2018 
	2013–2018 

	Crossing volume, 1 year (extrapolated) 
	Crossing volume, 1 year (extrapolated) 

	MC 
	MC 

	Various, many 13 hr, AM & MD & PM 
	Various, many 13 hr, AM & MD & PM 

	NB 
	NB 

	?? 
	?? 


	This study 
	This study 
	This study 

	Utah, US 
	Utah, US 

	1,020 signalized intersections 
	1,020 signalized intersections 

	2017 Jun – 2018 Jul 
	2017 Jun – 2018 Jul 

	Estimated volume,  1 day & 1 hour (averaged) 
	Estimated volume,  1 day & 1 hour (averaged) 

	AC 
	AC 

	Continuous 
	Continuous 

	LL, SA 
	LL, SA 

	 
	 




	Notes:  ?? = unknown.  
	Method: AC = automated counts, AP = aerial photos, MC = manual counts.  
	Details: WD = weekday, WE = weekend, AM = morning peak, MD = midday, PM = evening peak, DT = daytime.  
	Type:  L = linear, LL = log-linear (linear with natural log transformation), CR = linear with cube-root transformation, P = Poisson, NB = negative binomial,  SA = checked or corrected for spatial autocorrelation.  
	Fit:  R2 or pseudo-R2. 
	 
	The data collection methods used to obtain pedestrian volumes for most previous research led to some limitations in the accuracy, generalizability, and sensitivity of model results. First, the use of short-duration counts to represent average or typical volumes—even when adjusted for time of day and weather using a smaller number of longer-duration automated counts—adds measurement error to the dependent variable. This potentially affects the value and significance of estimated associations. Second, the sho
	2.2.2  Built Environment Predictors in Pedestrian Volume Modeling Studies 
	In pedestrian volume models, some built environment measures (see 
	In pedestrian volume models, some built environment measures (see 
	Table 2-2
	Table 2-2

	) are consistently related to walking in expected directions, while results for other variables are more equivocal. More often than not, studies find positive associations with residential and employment density. Walking is also closely linked to public transit: Locations closer to transit stops/stations and with more transit stops nearby tend to see greater pedestrian volumes. Diversity measures like land-use mix and entropy are sometimes positively related to pedestrian volumes, but studies also find insi

	a street; Park et al., 2019). A few studies have found that pedestrian volumes are significantly explained by socioeconomic and environmental variables like household size, household incomes, parks, and slope. 
	Table 2-2: Summary of Built Environment Predictors of Pedestrian Volumes 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Dir.a 
	Dir.a 

	Studies 
	Studies 



	Density 
	Density 
	Density 
	Density 

	 
	 

	 
	 


	Floor area ratio or building density 
	Floor area ratio or building density 
	Floor area ratio or building density 

	+ 
	+ 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019; Sung et al., 2013) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013) 


	Population density, household density, or residential space density 
	Population density, household density, or residential space density 
	Population density, household density, or residential space density 

	+ 
	+ 

	(Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing et al., 2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Lindsey, 2016; Hankey et al., 2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Tabeshian and Kattan, 2014) 
	(Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing et al., 2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Lindsey, 2016; Hankey et al., 2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Tabeshian and Kattan, 2014) 


	 
	 
	 

	ns / − 
	ns / − 

	(Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Maxwell, 2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009) 
	(Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Maxwell, 2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009) 


	Employment density, employment access, or commercial/office/non-residential space density 
	Employment density, employment access, or commercial/office/non-residential space density 
	Employment density, employment access, or commercial/office/non-residential space density 

	+ 
	+ 

	(Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019; Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kang, 2017, 2015; Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014)  
	(Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019; Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kang, 2017, 2015; Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014)  


	 
	 
	 

	ns / − 
	ns / − 

	(Hankey et al., 2012; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Sung et al., 2013) 
	(Hankey et al., 2012; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Sung et al., 2013) 


	Diversity 
	Diversity 
	Diversity 

	 
	 

	 
	 


	Land-use mix, entropy, balance, or % retail 
	Land-use mix, entropy, balance, or % retail 
	Land-use mix, entropy, balance, or % retail 

	+ 
	+ 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswold, 2009; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswold, 2009; Park et al., 2019; Sung et al., 2013) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Park et al., 2019) 
	(Ameli et al., 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Park et al., 2019) 


	Transit 
	Transit 
	Transit 

	 
	 

	 
	 


	Distance to nearest rail/bus stop/station 
	Distance to nearest rail/bus stop/station 
	Distance to nearest rail/bus stop/station 

	− 
	− 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 2013, 2015) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 2013, 2015) 


	 
	 
	 

	ns / + 
	ns / + 

	(Hankey et al., 2012; Park et al., 2019; Raford and Ragland, 2006; Rodríguez et al., 2009) 
	(Hankey et al., 2012; Park et al., 2019; Raford and Ragland, 2006; Rodríguez et al., 2009) 


	Transit stop density 
	Transit stop density 
	Transit stop density 

	+ 
	+ 

	(Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider et al., 2009, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014) 
	(Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider et al., 2009, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014) 


	 
	 
	 

	ns / − 
	ns / − 

	(Kang, 2017, 2015; Le et al., 2020) 
	(Kang, 2017, 2015; Le et al., 2020) 


	Street network design 
	Street network design 
	Street network design 

	 
	 

	 
	 


	Intersection density 
	Intersection density 
	Intersection density 

	+ 
	+ 

	(Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) 
	(Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) 




	 
	 
	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hankey and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Lu et al., 2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hankey and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Lu et al., 2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013) 


	% 4-way intersections 
	% 4-way intersections 
	% 4-way intersections 

	+ 
	+ 

	(Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019) 
	(Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Park et al., 2019; Sung et al., 2013) 


	Block length 
	Block length 
	Block length 

	+ 
	+ 

	(Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Tabeshian and Kattan, 2014) 
	(Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Tabeshian and Kattan, 2014) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Hamidi and Moazzeni, 2019; Park et al., 2019) 
	(Ameli et al., 2015; Hamidi and Moazzeni, 2019; Park et al., 2019) 


	Space syntax (integration, reach, betweenness, etc.) 
	Space syntax (integration, reach, betweenness, etc.) 
	Space syntax (integration, reach, betweenness, etc.) 

	+ 
	+ 

	(Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015; Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004) 
	(Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015; Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004) 


	 
	 
	 

	ns / − 
	ns / − 

	(Kang, 2017, 2015) 
	(Kang, 2017, 2015) 


	Socioeconomics 
	Socioeconomics 
	Socioeconomics 

	 
	 

	 
	 


	Household size 
	Household size 
	Household size 

	+ 
	+ 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019)  
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019)  


	 
	 
	 

	ns / − 
	ns / − 

	(Hamidi and Moazzeni, 2019; Maxwell, 2016) 
	(Hamidi and Moazzeni, 2019; Maxwell, 2016) 


	Mean/median income 
	Mean/median income 
	Mean/median income 

	− 
	− 

	(Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and Repaka, 2013) 
	(Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and Repaka, 2013) 


	 
	 
	 

	ns / + 
	ns / + 

	(Hankey et al., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Schneider et al., 2021; Tabeshian and Kattan, 2014) 
	(Hankey et al., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Schneider et al., 2021; Tabeshian and Kattan, 2014) 


	Environmental 
	Environmental 
	Environmental 

	 
	 

	 
	 


	Park density or proximity 
	Park density or proximity 
	Park density or proximity 

	+ 
	+ 

	(Kang, 2017, 2015) 
	(Kang, 2017, 2015) 


	 
	 
	 

	ns / − 
	ns / − 

	(Kang, 2017, 2015; Miranda-Moreno and Fernandes, 2011; Schneider et al., 2021; Sung et al., 2013) 
	(Kang, 2017, 2015; Miranda-Moreno and Fernandes, 2011; Schneider et al., 2021; Sung et al., 2013) 


	Slope or grade 
	Slope or grade 
	Slope or grade 

	− 
	− 

	(Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009; Schneider et al., 2012; Sung et al., 2013, 2015) 
	(Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009; Schneider et al., 2012; Sung et al., 2013, 2015) 


	 
	 
	 

	ns / + 
	ns / + 

	(Griswold et al., 2019) 
	(Griswold et al., 2019) 




	a Association with pedestrian volume: “+” positive, “–” negative, “ns” not statistically significant.  
	 
	2.2.3  Traffic Signal-Based Measures of Pedestrian Activity 
	In this study, we mitigate some of these limitations by utilizing a new source of pedestrian data: estimated pedestrian crossing volumes at signalized intersections, taken from pedestrian push-button events recorded in archived high-resolution traffic signal controller logs (Sturdevant et al., 2012). Assuming a traffic signal includes walk indications and pedestrian detection (usually push-buttons), at least two relevant pedestrian events can be recorded. Event code 90 (“pedestrian detector on”) occurs when
	recent years, several studies have investigated the use of pedestrian signal data for different purposes, including for pedestrian volume estimation (Blanc et al., 2015; Day et al., 2011; Kothuri et al., 2017; Li and Wu, 2021; Noyce and Bentzen, 2005; Singleton and Runa, 2021). More generally, high-resolution traffic signal event data are beginning to be used in a variety of other research and operational contexts (Wu and Liu, 2014), including through Automated Traffic Signal Performance Measures (ATSPM) sy
	To our knowledge, this is the first study to relate traffic signal-based measures of pedestrian activity with built environment characteristics. Recall the three limitations of the short-duration manual count pedestrian volume data typically used in prior built environment direct-demand models: measurement error due to factoring, an inability to model temporal variations, and the small number of locations studied. Since traffic signal data are recorded continuously (24 hours a day, 365 days a year), they ca
	A recent large-scale research effort in Utah investigating the feasibility of pedestrian traffic signal data for pedestrian volume estimation found similar levels of accuracy. Singleton et al. (2020; Singleton and Runa, 2021) collected traffic signal data as well as video recordings of pedestrian crossing events at 90 randomly selected signalized intersections across Utah in 2019. Almost 175,000 pedestrians were manually counted during more than 10,000 hours of video, covering different months, weekdays, an
	and unique pedestrian detections (removing those within 15 seconds of another detection)). For ease of application, the models did not include traffic volumes or neighborhood socioeconomic/environmental characteristics, although they did account for non-linear relationships between push-button use and pedestrian volumes (high vs. low pedestrian activity signal) and different traffic signal operations (phase on pedestrian recall or not, short vs. long average cycle length; HAWK signal vs. traditional signal)
	2.3  Direct-Demand Volume Modeling 
	As previously mentioned in Sections 
	As previously mentioned in Sections 
	1.1
	1.1

	 and 
	2.2
	2.2

	, direct-demand modeling is a frequently used approach for estimating non-motorized travel (Kuzmyak et al., 2014), including pedestrian volumes. Direct-demand models predict pedestrian volumes using observed counts and measures of the surrounding streetscape, land uses, built environment, and street network. Such models help to understand how environmental features affect pedestrian volumes and inform transportation and land-use planning and urban design strategies to promote walkable communities. In the fo

	2.3.1  Log-Linear Regression 
	Consistent with many other studies using built environment characteristics to predict pedestrian volumes (see 
	Consistent with many other studies using built environment characteristics to predict pedestrian volumes (see 
	Table 2-1
	Table 2-1

	), we employed a log-linear regression model in which our dependent variable is transformed using the natural log function. In general, log-linear regression 

	is used to predict a dependent variable (which may be skewed or the result of count data) using a variety of categorical or continuous independent variable predictors. Specifically:  log(𝑌𝑖)=𝛽0+𝛽1𝑋𝑖+𝜀𝑖 
	where log(𝑌𝑖) is the log-transformed dependent variable 𝑌𝑖 (in our case, annual average daily pedestrian (AADP) crossing volume at an intersection i), 𝛽0 is an intercept, 𝛽1 is a slope coefficient associated with an independent variable 𝑋𝑖 (in our case, one of several built environment characteristics), and 𝜀𝑖 is a random error term that is normally distributed. The dependent and independent variables (e.g., density, household attributes, land use, local destinations) are introduced in Chapter 
	where log(𝑌𝑖) is the log-transformed dependent variable 𝑌𝑖 (in our case, annual average daily pedestrian (AADP) crossing volume at an intersection i), 𝛽0 is an intercept, 𝛽1 is a slope coefficient associated with an independent variable 𝑋𝑖 (in our case, one of several built environment characteristics), and 𝜀𝑖 is a random error term that is normally distributed. The dependent and independent variables (e.g., density, household attributes, land use, local destinations) are introduced in Chapter 
	3.0
	3.0

	. 

	We decided against applying a negative binomial (or Poisson-gamma mixture) regression model—traditionally used to model count data—because our pedestrian data are not actually count data; instead, they are averages of counts. We used the log transformation because our data are strictly positive and are positively skewed (
	We decided against applying a negative binomial (or Poisson-gamma mixture) regression model—traditionally used to model count data—because our pedestrian data are not actually count data; instead, they are averages of counts. We used the log transformation because our data are strictly positive and are positively skewed (
	Figure 2-1
	Figure 2-1

	). An implication of the log-transformed dependent variable is that we can interpret our estimated coefficients (when exponentiated) as proportional or percentage changes (rather than absolute changes) in pedestrian signal activity due to changes to our independent variables. 

	 
	Figure
	 
	Figure
	Figure 2-1: Histogram of Annual Average Daily Pedestrian (AADP) Crossing Volume 
	(Top: AADP; Bottom: Log-Transformed AADP; Dashed Vertical Line: Mean) 
	 
	2.3.2  Spatial Lag or Spatial Error Model 
	The pedestrian data in this study may have an issue of spatial autocorrelation, meaning that the estimated pedestrian activity at one signal is correlated with activity at nearby signals. Reasons for this might include walk trips that extend from one block to the next, similar demographics or urban form characteristics, or a large-scale destination in one block (e.g., a regional park, convention center, or theater). Moran’s I statistic is a commonly used measure to check for spatial autocorrelation. Any spa
	controlling for the spatial autocorrelation, Moran’s I for model residuals in this study (p < .001) indicated a strongly positive spatial relationship.  
	The spatial lag or error model can be used as a robust tool to deal with the spatial autocorrelation issue in ordinary least squares (OLS) regression. The Lagrange multiplier test is used to assess whether the autocorrelation is in the dependent variable or in the errors and helps in the choice of a spatial regression model. The robust Lagrange multiplier test indicated a spatial error model as the most suitable method, and thus, we employed spatial error models that treat spatial autocorrelation between th
	2.3.3  Model Validation 
	To test how well our models can predict actual pedestrian volumes, we evaluated the predictive performance of our models by running k-fold cross-validation (Fielding and Bell, 1997; Hair et al., 2006). Using the same data to estimate parameters and to test predictive accuracy may overestimate model validity. In k-fold cross-validation, the data are divided into k equal partitions. In this study, data were randomly divided into ten folds: 90% of the data (training data) used for model fitting and 10% of the 
	2.4  Summary 
	Our review of pedestrian volume modeling studies found that most direct-demand models utilized manually collected, short-duration pedestrian counts at only a few dozen to a few hundred locations. Only one study used one week of automated counts, while only three studies used data from more than 1,000 sites. These practices result in study limitations: measurement error in the dependent variable, lower statistical power and lack of generalizability, and inability 
	to model temporal variations in built environment relationships with pedestrian volumes. Our research addresses many of these limitations through the use of a year’s worth of data from almost 1,500 signalized intersections. Research on traffic signal-based measures of pedestrian activity suggests that they are capable of predicting pedestrian volumes with reasonable accuracy. When conducting direct-demand pedestrian volume modeling, log-linear (or negative binomial) regression and accounting for spatial aut
	 
	3.0  DATA COLLECTION 
	3.1  Overview 
	This chapter contains details about the data collection, including estimated pedestrian volumes from traffic signal data and built environment data. 
	3.2  Estimated Pedestrian Volumes from Traffic Signal Data 
	The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis, Weber, Washington, and Cache. Cumulatively, these six counties comprise 84% of Utah’s population and contain most of the roughly 2,100 traffic signals in the state. 
	The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis, Weber, Washington, and Cache. Cumulatively, these six counties comprise 84% of Utah’s population and contain most of the roughly 2,100 traffic signals in the state. 
	Figure 3-1
	Figure 3-1

	 shows a map of the traffic signals located within the six study counties in Utah. The Utah Department of Transportation (UDOT) has helped lead the development and deployment of the ATSPM system (Day et al., 2016) through which archived traffic signal controller event logs can be accessed. As of Fall 2018, UDOT was actively archiving data from more than 1,900 state- and locally owned signals in a central database (Taylor and Mackey, 2018). 

	 
	 
	Figure
	Figure 3-1: Map of Signalized Intersections in the Six Most Populous Counties in Utah 
	 
	Our pedestrian volume data are estimates of annual average daily pedestrian (AADP) crossing volumes at signalized intersections, derived from pedestrian activity events recorded in high-resolution traffic signal controller event logs. For this study, we obtained one year—01 July 2017 through 30 June 2018—of pedestrian data from all traffic signals in our study area. After cleaning the data to remove missing observations, we applied the pedestrian volume estimation methods developed by Singleton et al. (2020
	Our pedestrian volume data are estimates of annual average daily pedestrian (AADP) crossing volumes at signalized intersections, derived from pedestrian activity events recorded in high-resolution traffic signal controller event logs. For this study, we obtained one year—01 July 2017 through 30 June 2018—of pedestrian data from all traffic signals in our study area. After cleaning the data to remove missing observations, we applied the pedestrian volume estimation methods developed by Singleton et al. (2020
	Table 3-1
	Table 3-1

	. 

	Table 3-1: Descriptive Statistics for Dependent Variables 
	Variable  
	Variable  
	Variable  
	Variable  
	Variable  

	Min 
	Min 

	Med 
	Med 

	Max 
	Max 

	Mean 
	Mean 

	SD 
	SD 



	Estimated annual average daily pedestrians (AADP) 
	Estimated annual average daily pedestrians (AADP) 
	Estimated annual average daily pedestrians (AADP) 
	Estimated annual average daily pedestrians (AADP) 

	1.08 
	1.08 

	116.13 
	116.13 

	6737.22 
	6737.22 

	267.28 
	267.28 

	519.00 
	519.00 


	Weekdays (Monday–Friday) 
	Weekdays (Monday–Friday) 
	Weekdays (Monday–Friday) 

	1.12 
	1.12 

	133.15 
	133.15 

	7547.23 
	7547.23 

	300.66 
	300.66 

	598.50 
	598.50 


	Weekends (Saturday–Sunday) 
	Weekends (Saturday–Sunday) 
	Weekends (Saturday–Sunday) 

	0.61 
	0.61 

	77.52 
	77.52 

	4712.21 
	4712.21 

	183.82 
	183.82 

	352.54 
	352.54 


	Estimated annual average hourly pedestrians (AAHP) 
	Estimated annual average hourly pedestrians (AAHP) 
	Estimated annual average hourly pedestrians (AAHP) 

	0.04 
	0.04 

	4.84 
	4.84 

	280.72 
	280.72 

	11.14 
	11.14 

	21.63 
	21.63 


	00:00–02:59 
	00:00–02:59 
	00:00–02:59 

	0.00 
	0.00 

	0.43 
	0.43 

	46.86 
	46.86 

	1.58 
	1.58 

	3.98 
	3.98 


	03:00–05:59 
	03:00–05:59 
	03:00–05:59 

	0.00 
	0.00 

	0.49 
	0.49 

	53.81 
	53.81 

	1.41 
	1.41 

	3.65 
	3.65 


	06:00–08:59 
	06:00–08:59 
	06:00–08:59 

	0.01 
	0.01 

	4.85 
	4.85 

	269.93 
	269.93 

	10.19 
	10.19 

	19.38 
	19.38 


	09:00–11:59 
	09:00–11:59 
	09:00–11:59 

	0.05 
	0.05 

	5.84 
	5.84 

	418.02 
	418.02 

	14.53 
	14.53 

	30.99 
	30.99 


	12:00–14:59 
	12:00–14:59 
	12:00–14:59 

	0.04 
	0.04 

	8.31 
	8.31 

	536.79 
	536.79 

	19.70 
	19.70 

	41.19 
	41.19 


	15:00–17:59 
	15:00–17:59 
	15:00–17:59 

	0.09 
	0.09 

	9.69 
	9.69 

	487.00 
	487.00 

	21.52 
	21.52 

	41.51 
	41.51 


	18:00–20:59 
	18:00–20:59 
	18:00–20:59 

	0.05 
	0.05 

	5.46 
	5.46 

	366.67 
	366.67 

	14.00 
	14.00 

	28.76 
	28.76 


	21:00–23:59 
	21:00–23:59 
	21:00–23:59 

	0.01 
	0.01 

	2.26 
	2.26 

	135.23 
	135.23 

	6.16 
	6.16 

	12.34 
	12.34 




	 
	We have also visualized AADP and AAHP pedestrian crossing volumes on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Estimated Pedestrian Volumes at Signalized Intersections (1,494) in Utah” is available for public viewing here: 
	We have also visualized AADP and AAHP pedestrian crossing volumes on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Estimated Pedestrian Volumes at Signalized Intersections (1,494) in Utah” is available for public viewing here: 
	https://arcg.is/0S84Wf
	https://arcg.is/0S84Wf

	. A direct link to the map itself is here: 
	https://arcg.is/1aTT4f
	https://arcg.is/1aTT4f

	. A screenshot of the map showing overall (any day) estimated AADP volumes for traffic signals in Salt Lake County is shown in 
	Figure 3-2
	Figure 3-2

	.  
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	Figure 3-2: Estimated Annual Average Daily Pedestrian (AADP) Volumes at Traffic Signals in Salt Lake County, Utah 
	 
	3.3  Built Environment Data 
	Neighborhood built environment variables were measured for two different buffer widths—½-mile and ¼-mile—in a belief that the number of pedestrians may depend on the neighborhood environment at different scales. For example, the influence of road traffic volume on pedestrian activity may only be significant over a short distance while that of street network connectivity may be more extensive. A quarter-mile and a half-mile were selected as a standard 
	walking distance beyond which walk frequency drops off rapidly; they are used in most travel behavior literature (Ewing and Clemente, 2013; Nagel et al., 2008). Thus, using the “Network Analyst” tool in the ArcGIS Pro software, we created street network-based buffers by ½-mile and ¼-mile for every signalized intersection.  
	For the predictors of pedestrian signal activity, we measured “D” variables—density, diversity, design, destination accessibility, and distance to transit—as well as socioeconomic factors. For density variables, we measured population density (number of 1,000 people per square mile) and employment density (number of 1,000 jobs per square mile). The population data came from the American Community Survey (ACS) 2013-2017 at the Census block group level, and the employment data (2017) were collected from the L
	For a transit variable, we measured the number of transit stops in each buffer area. Transit stop location data in 2019 was available at OpenMobilityData (https://transitfeeds.com/) as a form of General Transit Feed Specification (GTFS). Also, two gross measures of street network design were computed, using intersection location data provided by the Metropolitan Research Center at the University of Utah. Intersection density (a measure of the block size) was computed as the number of intersections within a 
	Three demographic variables were also included—average household size, median household income, and average vehicle ownership—for block groups intersecting with the buffer. We hypothesized that more affluent residents with more vehicles available might walk less and drive more, while bigger households might walk more (Ewing et al., 2015; Owen et al., 
	2007). Data for demographic measures were gathered from the ACS (2017 5-year estimates) and assigned to the buffer using the spatial apportioning technique described above. Lastly, as a measure of traffic safety, we included road types for roads near the intersection. Road types were divided into three categories based on the cartographic code of road centerline data, provided by UDOT: highways (interstates, US and state highways, and associated ramps), major roads (“major local roads” such as arterials), a
	Table 3-2
	Table 3-2
	Table 3-2

	 shows descriptive statistics for the built environment variables. Within a given buffer width, all correlations between these variables were low to moderate (< 0.55) except for a negative correlation between residential and commercial land uses (-0.75). Also, the highest variance inflation factor (VIF) values in the regression models were lower than 5. Therefore, we conclude that multicollinearity among independent variables was not an issue. 

	Table 3-2: Descriptive Statistics for Independent Variables 
	 
	 
	 
	 
	 

	¼-mile 
	¼-mile 

	½-mile 
	½-mile 



	Variable 
	Variable 
	Variable 
	Variable 

	Mean 
	Mean 

	SD 
	SD 

	Mean 
	Mean 

	SD 
	SD 


	Population density (1,000 per sq. mi.) 
	Population density (1,000 per sq. mi.) 
	Population density (1,000 per sq. mi.) 

	4.39 
	4.39 

	2.80 
	2.80 

	4.44 
	4.44 

	2.55 
	2.55 


	Employment density (1,000 per sq. mi.) 
	Employment density (1,000 per sq. mi.) 
	Employment density (1,000 per sq. mi.) 

	5.60 
	5.60 

	8.10 
	8.10 

	4.85 
	4.85 

	6.31 
	6.31 


	Household size (average) 
	Household size (average) 
	Household size (average) 

	3.09 
	3.09 

	1.09 
	1.09 

	3.10 
	3.10 

	0.98 
	0.98 


	Household income ($1,000) 
	Household income ($1,000) 
	Household income ($1,000) 

	59.75 
	59.75 

	23.21 
	23.21 

	60.27 
	60.27 

	22.40 
	22.40 


	Vehicle ownership 
	Vehicle ownership 
	Vehicle ownership 

	1.68 
	1.68 

	0.51 
	0.51 

	1.69 
	1.69 

	0.47 
	0.47 


	% residential land use 
	% residential land use 
	% residential land use 

	31.02 
	31.02 

	22.72 
	22.72 

	37.17 
	37.17 

	21.37 
	21.37 


	% commercial land use 
	% commercial land use 
	% commercial land use 

	29.38 
	29.38 

	20.11 
	20.11 

	24.74 
	24.74 

	16.86 
	16.86 


	Intersection density (per sq. mi.) 
	Intersection density (per sq. mi.) 
	Intersection density (per sq. mi.) 

	97.97 
	97.97 

	49.01 
	49.01 

	100.32 
	100.32 

	38.86 
	38.86 


	% 4-way intersections 
	% 4-way intersections 
	% 4-way intersections 

	28.46 
	28.46 

	21.88 
	21.88 

	25.79 
	25.79 

	16.61 
	16.61 


	# schools 
	# schools 
	# schools 

	0.30 
	0.30 

	0.62 
	0.62 

	0.92 
	0.92 

	1.18 
	1.18 


	# places of worship 
	# places of worship 
	# places of worship 

	0.52 
	0.52 

	0.80 
	0.80 

	1.79 
	1.79 

	1.84 
	1.84 


	# transit stops 
	# transit stops 
	# transit stops 

	4.81 
	4.81 

	3.94 
	3.94 

	12.71 
	12.71 

	9.93 
	9.93 


	Park acreage 
	Park acreage 
	Park acreage 

	1.46 
	1.46 

	3.59 
	3.59 

	5.54 
	5.54 

	9.10 
	9.10 




	 
	3.4  Summary 
	The outcome data (dependent variables) are pedestrian crossing volumes, estimated from traffic signal data. To obtain these volumes, we used one year of ATSPM data (July 2017 
	through June 2018) at 1,494 signalized intersections in the six most populous Utah counties and applied the factoring methods developed in the Phase I project (Singleton et al., 2020). We then calculated the average annual daily and hourly pedestrian (AADP, AAHP) volumes overall and for weekdays vs. weekends and each three-hour period during the day. The input data (independent variables) are measures of the locations surrounding each signal related to land use, the built environment, the transportation sys
	 
	4.0  DATA EVALUATION 
	4.1  Overview 
	This chapter reports on data evaluation aspects, including results of the direct-demand models of daily and hourly pedestrian volumes, model validation results, and model application and visualization. 
	4.2  Results for Annual Average Daily Pedestrians by Day of Week 
	Table 4-1
	Table 4-1
	Table 4-1

	 shows three models for daily pedestrian activity (AADP) for all days, weekdays, and weekends, respectively. Lambda represents a coefficient on the spatially correlated errors (Anselin and Rey, 2010): it has a positive effect and is statistically significant in all models. 

	Table 4-1: Model Results, Annual Average Daily Pedestrians  
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Day of week (AADP) 
	Day of week (AADP) 



	 
	 
	 
	 

	All days 
	All days 

	Mon–Fri 
	Mon–Fri 

	Sat–Sun 
	Sat–Sun 


	Variable 
	Variable 
	Variable 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 


	(Intercept) 
	(Intercept) 
	(Intercept) 

	2.747 
	2.747 

	0.234 
	0.234 

	* 
	* 

	2.897 
	2.897 

	0.235 
	0.235 

	* 
	* 

	2.275 
	2.275 

	0.242 
	0.242 

	* 
	* 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	0.326 
	0.326 

	0.059 
	0.059 

	* 
	* 

	0.344 
	0.344 

	0.059 
	0.059 

	* 
	* 

	0.373 
	0.373 

	0.061 
	0.061 

	* 
	* 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	0.124 
	0.124 

	0.028 
	0.028 

	* 
	* 

	0.136 
	0.136 

	0.028 
	0.028 

	* 
	* 

	0.070 
	0.070 

	0.029 
	0.029 

	* 
	* 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	0.418 
	0.418 

	0.102 
	0.102 

	* 
	* 

	0.452 
	0.452 

	0.103 
	0.103 

	* 
	* 

	0.146 
	0.146 

	0.106 
	0.106 

	 
	 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.008 
	-0.008 

	0.002 
	0.002 

	* 
	* 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	-0.198 
	-0.198 

	0.072 
	0.072 

	* 
	* 

	-0.217 
	-0.217 

	0.073 
	0.073 

	* 
	* 

	-0.103 
	-0.103 

	0.075 
	0.075 

	 
	 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 

	0.022 
	0.022 

	0.002 
	0.002 

	* 
	* 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.008 
	0.008 

	0.002 
	0.002 

	* 
	* 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	0.155 
	0.155 

	0.039 
	0.039 

	* 
	* 

	0.170 
	0.170 

	0.039 
	0.039 

	* 
	* 

	0.065 
	0.065 

	0.041 
	0.041 

	 
	 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	0.060 
	0.060 

	0.020 
	0.020 

	* 
	* 

	0.054 
	0.054 

	0.021 
	0.021 

	* 
	* 

	0.080 
	0.080 

	0.021 
	0.021 

	* 
	* 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	0.068 
	0.068 

	0.008 
	0.008 

	* 
	* 

	0.069 
	0.069 

	0.008 
	0.008 

	* 
	* 

	0.066 
	0.066 

	0.008 
	0.008 

	* 
	* 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	0.022 
	0.022 

	0.007 
	0.007 

	* 
	* 

	0.023 
	0.023 

	0.007 
	0.007 

	* 
	* 

	0.025 
	0.025 

	0.007 
	0.007 

	* 
	* 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	0.242 
	0.242 

	0.053 
	0.053 

	* 
	* 

	0.245 
	0.245 

	0.053 
	0.053 

	* 
	* 

	0.245 
	0.245 

	0.055 
	0.055 

	* 
	* 


	Model diagnosticsc 
	Model diagnosticsc 
	Model diagnosticsc 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3772 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3784 

	Lambda: 0.46 
	Lambda: 0.46 
	AIC: 3909.7 


	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	b log-transformed 
	c all Lambdas are p<.001 

	 
	 




	 
	Most built environment variables—population density, employment density, % residential parcels, % commercial parcels, intersection density, % 4-way intersections, schools, places of worship, transit stops, and park acreage—were statistically significant at a p<.05 level and positively associated with the estimated average daily volumes of pedestrians. Among demographic variables, pedestrian volume increased with average household size and decreased with median household income and average vehicle ownership 
	Notable day-of-week differences were also found. As expected, the number of schools near the intersection was not significant in the weekend model; so were two other demographic variables: household size and vehicle ownership. Albeit statistically significant across the three daily models, a higher coefficient for the employment density variable was found on weekdays while the population density variable had a bigger size effect on weekends. Also, the coefficient for places of worship was higher in the week
	4.3  Results for Annual Average Hourly Pedestrians by Time of Day 
	Table 4-2
	Table 4-2
	Table 4-2

	 shows eight models for hourly pedestrian activity (AAHP) for specific times of day, in 3-hour windows from midnight to midnight. Lambda values had a positive effect and were statistically significant in all models.  

	Table 4-2: Model Results, Annual Average Hourly Pedestrians 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Time of day (AAHP) 
	Time of day (AAHP) 



	 
	 
	 
	 

	12am–3am 
	12am–3am 

	3am–6am 
	3am–6am 

	6am–9am 
	6am–9am 

	9am–12pm 
	9am–12pm 


	Variable 
	Variable 
	Variable 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 


	(Intercept) 
	(Intercept) 
	(Intercept) 

	-1.203 
	-1.203 

	0.262 
	0.262 

	* 
	* 

	-0.965 
	-0.965 

	0.254 
	0.254 

	* 
	* 

	-0.013 
	-0.013 

	0.246 
	0.246 

	 
	 

	-0.175 
	-0.175 

	0.230 
	0.230 

	 
	 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	0.499 
	0.499 

	0.066 
	0.066 

	* 
	* 

	0.317 
	0.317 

	0.064 
	0.064 

	* 
	* 

	0.252 
	0.252 

	0.062 
	0.062 

	* 
	* 

	0.293 
	0.293 

	0.058 
	0.058 

	* 
	* 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	0.061 
	0.061 

	0.031 
	0.031 

	~ 
	~ 

	0.034 
	0.034 

	0.031 
	0.031 

	 
	 

	0.078 
	0.078 

	0.029 
	0.029 

	* 
	* 

	0.129 
	0.129 

	0.027 
	0.027 

	* 
	* 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	0.092 
	0.092 

	0.115 
	0.115 

	 
	 

	0.266 
	0.266 

	0.111 
	0.111 

	* 
	* 

	0.420 
	0.420 

	0.107 
	0.107 

	* 
	* 

	0.377 
	0.377 

	0.100 
	0.100 

	* 
	* 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	-0.016 
	-0.016 

	0.002 
	0.002 

	* 
	* 

	-0.013 
	-0.013 

	0.002 
	0.002 

	* 
	* 

	-0.008 
	-0.008 

	0.002 
	0.002 

	* 
	* 

	-0.009 
	-0.009 

	0.002 
	0.002 

	* 
	* 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	-0.149 
	-0.149 

	0.081 
	0.081 

	~ 
	~ 

	-0.236 
	-0.236 

	0.078 
	0.078 

	* 
	* 

	-0.270 
	-0.270 

	0.076 
	0.076 

	* 
	* 

	-0.188 
	-0.188 

	0.071 
	0.071 

	* 
	* 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	-0.002 
	-0.002 

	0.002 
	0.002 

	 
	 

	-0.003 
	-0.003 

	0.002 
	0.002 

	 
	 

	0.008 
	0.008 

	0.002 
	0.002 

	* 
	* 

	0.004 
	0.004 

	0.002 
	0.002 

	~ 
	~ 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	0.013 
	0.013 

	0.002 
	0.002 

	* 
	* 

	0.010 
	0.010 

	0.002 
	0.002 

	* 
	* 

	0.013 
	0.013 

	0.002 
	0.002 

	* 
	* 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	0.001 
	0.001 

	0.001 
	0.001 

	 
	 

	0.002 
	0.002 

	0.001 
	0.001 

	~ 
	~ 

	0.003 
	0.003 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.002 
	0.002 

	0.002 
	0.002 

	 
	 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.007 
	0.007 

	0.002 
	0.002 

	* 
	* 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	0.008 
	0.008 

	0.044 
	0.044 

	 
	 

	-0.016 
	-0.016 

	0.043 
	0.043 

	 
	 

	0.244 
	0.244 

	0.040 
	0.040 

	* 
	* 

	0.115 
	0.115 

	0.038 
	0.038 

	* 
	* 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	0.052 
	0.052 

	0.023 
	0.023 

	* 
	* 

	0.040 
	0.040 

	0.022 
	0.022 

	~ 
	~ 

	0.049 
	0.049 

	0.021 
	0.021 

	* 
	* 

	0.069 
	0.069 

	0.020 
	0.020 

	* 
	* 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	0.047 
	0.047 

	0.009 
	0.009 

	* 
	* 

	0.046 
	0.046 

	0.009 
	0.009 

	* 
	* 

	0.060 
	0.060 

	0.008 
	0.008 

	* 
	* 

	0.074 
	0.074 

	0.008 
	0.008 

	* 
	* 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	0.017 
	0.017 

	0.007 
	0.007 

	* 
	* 

	0.016 
	0.016 

	0.007 
	0.007 

	* 
	* 

	0.020 
	0.020 

	0.007 
	0.007 

	* 
	* 

	0.019 
	0.019 

	0.006 
	0.006 

	* 
	* 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	0.203 
	0.203 

	0.059 
	0.059 

	* 
	* 

	0.258 
	0.258 

	0.058 
	0.058 

	* 
	* 

	0.258 
	0.258 

	0.055 
	0.055 

	* 
	* 

	0.230 
	0.230 

	0.051 
	0.051 

	* 
	* 


	Model diagnosticsc 
	Model diagnosticsc 
	Model diagnosticsc 

	Lambda: 0.47 
	Lambda: 0.47 
	AIC: 4135.2 

	Lambda: 0.44 
	Lambda: 0.44 
	AIC: 4070.8 

	Lambda: 0.51 
	Lambda: 0.51 
	AIC: 3887.7 

	Lambda: 0.51 
	Lambda: 0.51 
	AIC: 3697.0 


	 
	 
	 

	 
	 


	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Time of day (AAHP) 
	Time of day (AAHP) 


	 
	 
	 

	12pm–3pm 
	12pm–3pm 

	3pm–6pm 
	3pm–6pm 

	6pm–9pm 
	6pm–9pm 

	9pm–12am 
	9pm–12am 


	Variable 
	Variable 
	Variable 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 


	(Intercept) 
	(Intercept) 
	(Intercept) 

	0.029 
	0.029 

	0.231 
	0.231 

	 
	 

	0.216 
	0.216 

	0.233 
	0.233 

	 
	 

	-0.420 
	-0.420 

	0.237 
	0.237 

	~ 
	~ 

	-0.826 
	-0.826 

	0.241 
	0.241 

	* 
	* 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	0.334 
	0.334 

	0.058 
	0.058 

	* 
	* 

	0.343 
	0.343 

	0.059 
	0.059 

	* 
	* 

	0.388 
	0.388 

	0.060 
	0.060 

	* 
	* 

	0.498 
	0.498 

	0.061 
	0.061 

	* 
	* 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	0.147 
	0.147 

	0.028 
	0.028 

	* 
	* 

	0.121 
	0.121 

	0.028 
	0.028 

	* 
	* 

	0.112 
	0.112 

	0.028 
	0.028 

	* 
	* 

	0.116 
	0.116 

	0.029 
	0.029 

	* 
	* 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	0.426 
	0.426 

	0.101 
	0.101 

	* 
	* 

	0.444 
	0.444 

	0.102 
	0.102 

	* 
	* 

	0.327 
	0.327 

	0.104 
	0.104 

	* 
	* 

	0.257 
	0.257 

	0.105 
	0.105 

	* 
	* 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.013 
	-0.013 

	0.002 
	0.002 

	* 
	* 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	-0.169 
	-0.169 

	0.071 
	0.071 

	* 
	* 

	-0.191 
	-0.191 

	0.072 
	0.072 

	* 
	* 

	-0.131 
	-0.131 

	0.073 
	0.073 

	~ 
	~ 

	-0.133 
	-0.133 

	0.074 
	0.074 

	~ 
	~ 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.002 
	0.002 

	0.002 
	0.002 

	 
	 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	0.020 
	0.020 

	0.002 
	0.002 

	* 
	* 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 

	0.021 
	0.021 

	0.002 
	0.002 

	* 
	* 

	0.018 
	0.018 

	0.002 
	0.002 

	* 
	* 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.003 
	0.003 

	0.001 
	0.001 

	* 
	* 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.008 
	0.008 

	0.002 
	0.002 

	* 
	* 

	0.007 
	0.007 

	0.002 
	0.002 

	* 
	* 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	0.167 
	0.167 

	0.039 
	0.039 

	* 
	* 

	0.159 
	0.159 

	0.039 
	0.039 

	* 
	* 

	0.079 
	0.079 

	0.039 
	0.039 

	* 
	* 

	0.030 
	0.030 

	0.040 
	0.040 

	 
	 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	0.068 
	0.068 

	0.020 
	0.020 

	* 
	* 

	0.058 
	0.058 

	0.020 
	0.020 

	* 
	* 

	0.071 
	0.071 

	0.021 
	0.021 

	* 
	* 

	0.064 
	0.064 

	0.021 
	0.021 

	* 
	* 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	0.074 
	0.074 

	0.008 
	0.008 

	* 
	* 

	0.072 
	0.072 

	0.008 
	0.008 

	* 
	* 

	0.069 
	0.069 

	0.008 
	0.008 

	* 
	* 

	0.062 
	0.062 

	0.008 
	0.008 

	* 
	* 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	0.022 
	0.022 

	0.006 
	0.006 

	* 
	* 

	0.021 
	0.021 

	0.007 
	0.007 

	* 
	* 

	0.028 
	0.028 

	0.007 
	0.007 

	* 
	* 

	0.025 
	0.025 

	0.007 
	0.007 

	* 
	* 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	0.220 
	0.220 

	0.052 
	0.052 

	* 
	* 

	0.259 
	0.259 

	0.052 
	0.052 

	* 
	* 

	0.220 
	0.220 

	0.053 
	0.053 

	* 
	* 

	0.202 
	0.202 

	0.054 
	0.054 

	* 
	* 


	Model diagnosticsc 
	Model diagnosticsc 
	Model diagnosticsc 

	Lambda: 0.48 
	Lambda: 0.48 
	AIC: 3741.6 

	Lambda: 0.48 
	Lambda: 0.48 
	AIC: 3764.2 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3810.5 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3857.6 


	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	b log-transformed 
	c all Lambdas are p<.001 

	 
	 




	 
	Again, most built environmental variables were positively associated with the pedestrian volumes across the day at a p<.05 significance level: population density, employment density, % commercial parcels, intersection density, % 4-way intersections, places of worship, transit stops, and park acreage. Average household size (positively), median household income (negatively), 
	and vehicle ownership (negatively) were also statistically significant in most time-of-day models of pedestrian volume. Higher pedestrian volumes were found for intersections on major roads, as opposed to just highways or local road types.  
	Some time-of-day differences were also found. The number of schools near an intersection was positively associated with pedestrian activity, but only during the daytime (6am–9pm). Residential land use became statistically non-significant during the nighttime (in the after-9pm or before-6am models). The slope coefficients of population density were higher during the nighttime (after-6pm models) while those of employment density were higher during the daytime (models for 9am–3pm). The coefficient for being on
	4.4  Overall Results 
	Table 4-3
	Table 4-3
	Table 4-3

	 shows the direction of significant effects for all independent variables in the three AADP and eight AADH models. Results from both the daily and hourly models confirm theoretically consistent relationships between built environment measures and pedestrian activity, as identified in 
	Table 2-2
	Table 2-2

	 through the literature review. In general, more pedestrian activity was found in locations with greater density (greater population and employment density, higher shares of residential and commercial land uses), more transit access (greater transit stop density), more connected street networks (greater intersection density, higher share of four-way intersections), and closer to major destinations (parks, schools, and places of worship).  

	Results from the day-of-week and time-of-day models also highlighted important temporal variations in built environment relationships with walking. Schools were significant and influential only when in session: on weekdays and during daytime hours, not on weekends or at night. As expected, employment density was less influential and/or not significant on weekends and at night, while residential density had larger coefficients at night and on weekends.  
	Table 4-3: Model Results, Overall 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Day of week (AADP) 
	Day of week (AADP) 

	Time of day (AAHP) 
	Time of day (AAHP) 



	Variable 
	Variable 
	Variable 
	Variable 

	All days 
	All days 

	Mon–Fri 
	Mon–Fri 

	Sat–Sun 
	Sat–Sun 

	12am–3am 
	12am–3am 

	3am–6am 
	3am–6am 

	6am–9am 
	6am–9am 

	9am–12pm 
	9am–12pm 

	12pm–3pm 
	12pm–3pm 

	3pm–6pm 
	3pm–6pm 

	6pm–9pm 
	6pm–9pm 

	9pm–12am 
	9pm–12am 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	+ 
	+ 

	+ 
	+ 

	 
	 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	− 
	− 

	− 
	− 

	 
	 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	 
	 

	 
	 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 




	Notes: + = significant positive association, − = significant negative association, blank = no significant association.  
	 
	4.5  Model Validation Results 
	After fitting the models with the full data, we assessed the predictive power of the nine models using 10-fold cross-validation. Intersections (n=1,494) were randomly split into ten equal-sized groups. The validation data set (10% of the data) was used to validate the model, which was fitted using the other 90% of the data through a spatial error model. As a result of the 10-fold cross-validation, we obtained average RMSE, MAE, and MAPE for each model. From the cross-validation results, the average RMSEs ra
	4.6  Model Application and Visualizations 
	The ultimate objective of developing direct-demand models of pedestrian volumes is to utilize their ability to predict pedestrian volumes in locations where data on pedestrians do not exist. For this project, the objective was to predict pedestrian volumes for unsignalized intersections, to supplement the traffic signal-based estimates of pedestrian volumes at signalized intersections. Therefore, we applied the models presented earlier in this chapter to around 62,000 unsignalized intersections with 3 or 4 
	The first step was to assemble all of the necessary data about those unsignalized intersections needed to apply the direct-demand pedestrian volume models. This information included the same built environment data as was assembled for signalized intersections, as described in Section 
	The first step was to assemble all of the necessary data about those unsignalized intersections needed to apply the direct-demand pedestrian volume models. This information included the same built environment data as was assembled for signalized intersections, as described in Section 
	3.3
	3.3

	: characteristics of land uses (residential and commercial), the built environment (population and employment density, schools, parks, places of worship), the transportation system (intersection density, transit stop density, percentage of four-way intersections, road type), and neighborhood demographics (household size, household income, and vehicle ownership). These measures were assembled from the same data sources (UDOT, Utah AGRC, US Census, etc.) and using the same methods (quarter-mile or half-mile n

	The next step was to apply the direct demand pedestrian volume models to the data assembled for the unsignalized intersections. We took the 12 models—three for AADP (all, weekday, weekend), and nine for AAHP (all, plus three-hour intervals throughout the day)—and applied each of them to all of the 62,336 unsignalized intersections. Thus, for each unsignalized intersection, we obtained an annual average prediction of daily and hourly pedestrian volumes for different days of the week and times of day.  
	The final step was to assemble our predicted pedestrian volumes and visualize them on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Predicted Pedestrian volumes at Intersections (62k) in Utah” is available for public viewing here: 
	The final step was to assemble our predicted pedestrian volumes and visualize them on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Predicted Pedestrian volumes at Intersections (62k) in Utah” is available for public viewing here: 
	https://arcg.is/0O8bOG
	https://arcg.is/0O8bOG

	. A direct link to the map itself is here: 
	https://arcg.is/0GO0Cv
	https://arcg.is/0GO0Cv

	. 

	Screenshots of the map showing overall (any day) predicted AADP volumes for different urban areas in Utah are shown in 
	Screenshots of the map showing overall (any day) predicted AADP volumes for different urban areas in Utah are shown in 
	Figure 4-1
	Figure 4-1

	. Screenshots of the map showing overall, weekday, and weekend predicted AADP volumes for one area in Utah are shown in 
	Figure 4-2
	Figure 4-2

	.  

	 
	 
	 
	 
	 
	 
	Figure
	(a) Salt Lake County 




	 
	 
	 
	 
	 
	Figure
	(b) Utah County 



	 
	 
	 
	 
	Figure
	(c) Weber County 

	 
	 
	Figure
	 (d) Cache County 




	 
	 
	 
	 
	 
	Figure
	 (e) Washington County 




	Figure 4-1: Predicted Annual Average Daily Pedestrian (AADP) Volumes in Various Utah Urban Areas 
	 
	 
	 
	 
	 
	 
	Figure
	 (a) Any Day 


	 
	 
	 
	Figure
	 (b) Weekdays (Mon – Fri) 




	 
	 
	 
	 
	 
	Figure
	 (c) Weekends (Sat – Sun) 




	Figure 4-2: Predicted Annual Average Daily Pedestrian (AADP) Volumes for Various Weekdays 
	 
	4.7  Summary 
	Results from daily and hourly direct demand pedestrian volume models confirmed theoretically consistent relationships between built environment measures and pedestrian activity. In general, more pedestrian activity was found in locations with greater density, more transit access, more connected street networks, and closer to major destinations. Results also highlighted important temporal variations in built environment relationships with walking. Schools were significant and influential when in session: on 
	 
	5.0  CONCLUSIONS 
	5.1  Summary 
	To meet our study objective of examining relationships between the built environment and pedestrian activity, we developed direct-demand built environment models of daily and hourly pedestrian crossing volumes at signalized intersections using a novel data source: volumes estimated using pedestrian push-button events from high-resolution traffic signal controller logs. Based on our review of past research, we used log-linear regression and controlled spatial autocorrelation, and we examined traditional buil
	5.2  Findings 
	Indeed, all of our findings are consistent with theory and expectations (from past research) regarding links between walking and the built environment (see Table 2), which supports the validity of our pedestrian measures. Intersections with greater population and employment densities and higher percentages of nearby residential and commercial land uses saw more pedestrian activity (Ameli et al., 2015; Behnam and Patel, 1977; Ewing et al., 2016; Ewing and Clemente, 2013; Kim et al., 2019; Liu and Griswold, 2
	Fernandes, 2011; Park et al., 2019; Sung et al., 2013). Regarding sociodemographic characteristics, as has been found previously, pedestrian activity was greater in neighborhoods with larger household sizes (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019). Overall, these results continue to support research-informed built environment interventions and land-use policies aimed at creating more walkable communities.  
	Our analysis was also able to uncover theoretically consistent relationships between walking and other built environmental attributes for which past research has more commonly found null or theoretically inconsistent findings. Signals in areas with greater street network connectivity had more pedestrian crossing events, which has been found in only a few prior studies for intersection density (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) and the percentage of four-way intersections (Miranda-Moreno
	The use of a continuously recorded pedestrian data source also allowed us to examine time-of-day and day-of-week variations in these built environment relationships that are not feasible to consider when using only short-duration pedestrian counts. Many factors had similar relationships with pedestrian activity throughout the week and across the day, but a few did not. Population density seemed to be most relevant (with a larger coefficient) on weekends and during evening hours, when we expect more people t
	than during the day. Conversely, employment density played a bigger role on weekdays and during daytime hours: a 10% increase in employment density would be expected to generate 1.3% more (1.100.136) daily pedestrians during weekdays, but only 0.7% more (1.100.070) during weekends. As expected, our models showed that intersections near schools had greater pedestrian activity, but only or especially when primary/secondary schools are in session: on weekdays and during morning and afternoon commuting hours. T
	5.3  Limitations and Challenges 
	Despite these contributions, a limitation of this work is the use of pedestrian volumes estimated from traffic signal data as opposed to observed pedestrian counts or crossing volumes. Previous research on pedestrian behavior and the utilization of pedestrian push-buttons at signals has found that rates vary across locations such as by signal type (Kutela and Tang, 2020), in different situations like the presence/absence of approaching motor vehicles (Foster et al., 2014), and by age, gender, and other pede
	Another limitation is that the locations where pedestrian signal data are available may not be entirely representative. These data are not available at signals without pedestrian detection: in our study, these included some high-pedestrian downtown intersections that operate without push-buttons, as well as a few intersections in heavily-industrial areas and isolated freeway interchanges. Also, signalized intersections tend to be more highly concentrated along larger, arterial roadways and in urban areas, s
	non-signalized intersections, and our data may capture more utilitarian walk trips. That said, more than 90% of Utah’s population lives in an urban area, and we did find more walking near parks. It could be advantageous to combine signal-based estimates of pedestrian volumes with data from permanent pedestrian counters on trails and in other more recreational contexts in order to improve the generalizability of direct-demand models. Overall, these methods may be most appropriate for moderately urban to subu
	Despite these limitations and opportunities for future work, we think our theoretically consistent findings about built environment relationships with walking—and our ability to detect day-of-week and time-of-day variations in those relationships—demonstrate the utility of traffic signal data sources for direct-demand pedestrian volume modeling. There are hundreds of thousands of traffic signals across the US (NTOC, 2012), many with pedestrian push-buttons (more than 85% in Utah). Also, many states and regi
	 
	6.0  RECOMMENDATIONS AND IMPLEMENTATION 
	6.1  Recommendations 
	An accurate prediction of pedestrian traffic volume is an important goal for urban and transportation planners. The estimated pedestrian volumes at all intersections in Utah, a major product of this research project, can help UDOT and other governmental agencies at the state, regional, and local levels in multiple ways.  
	First, we recommend using the estimated pedestrian volumes as a measure of pedestrian exposure in pedestrian safety analyses (e.g., pedestrian crash rates, pedestrian crash frequency models, pedestrian fatalities involving impaired road users) (Lee & Abdel-Aty, 2005). As previously mentioned, pedestrian volume data useful for pedestrian safety analysis is costly and time-intensive to measure directly, so model-estimated volumes offer a potentially useful source of data. Crash prediction models and predictiv
	Second, these pedestrian volumes can be used in various other analysis procedures. Multimodal level-of-service calculations—including for pedestrian level of service for signalized intersections, but also for street segments and stop-controlled intersections—require information on pedestrian flow rates (TRB, 2016). Our models of pedestrian traffic volumes can provide necessary information for these types of calculations. Also, transportation planners can relate the pedestrian volume at intersections to walk
	Third, the spatial and temporal distributions of pedestrian volume highlight certain areas to prioritize planning and development interventions. In addition to guiding development 
	patterns (see the next paragraph), those data also show where to invest and improve pedestrian infrastructures, such as infill sidewalks or pedestrian crossing treatments. For example, expected pedestrian volume (obtained from our model estimates) could be one criterion when evaluating and programming pedestrian-focused infrastructure projects so that investment is directed towards locations with the biggest impact. Places with higher anticipated pedestrian volumes could be required to install higher-qualit
	Fourth, our statistical models of daily and hourly pedestrian traffic volume support built environment interventions and land-use policies aimed at creating more walkable communities. There is a growing interest in creating active living and walk-friendly communities in order to improve health, reduce automobile dependence, and strengthen local economies. The first implication for planning practice is that context is essential in street vitality. To increase the density of population and employment and prom
	Finally, there are opportunities to improve upon our analysis through additional research. Future studies could examine seasonal variations in daily pedestrian activity at signalized interactions, which would consider effects due to weather variables such as temperature, precipitation, and wind (Runa and Singleton, 2021). Also, because pedestrian traffic volumes may not be linearly related to all built environment variables, future studies may use non-linear regression such as generalized additive models (P
	Diversifying data sources and using machine learning techniques can contribute to a more accurate prediction of pedestrian traffic volume across multiple parts of Utah. As we pointed out in the previous “5.3 Limitations and Challenges” section, some types of intersections do not have pedestrian signal data, which could hurt the generalizability of our models and resulting maps. Those include high-traffic downtown areas without push-buttons, industrial areas and isolated freeway interchanges, and rural areas
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